Spectral densities from the lattice

David Dudal ¹, Orlando Oliveira ², Paulo Silva ²

¹ Department of Physics and Astronomy, Ghent University, Belgium ² Centro de Física Computacional, Universidade de Coimbra, Portugal

July 29, 2013

・ロト ・聞 ト ・ ヨト ・ ヨト

CENTRO::FÍSIC.

Outline

- How-to
- First results

- Finite temperature
- Lattice setup
- Positivity violation
- Spectral density

Landau gauge @ T=0

$$\mathcal{D}^{ab}_{\mu
u}(\hat{q}) \;=\; \delta^{ab}\,\left(\delta_{\mu
u}\;-\;rac{q_\mu q_
u}{q^2}
ight)\,\mathcal{D}(q^2)\;,$$

Lattice computation of the gluon propagator:

- Large volume: access to the deep IR region, infinite volume limit
 - SU(2): La = 27 fm, a = 0.22 fm

A. Cucchieri, T. Mendes, PoS (LAT 2007) 297

• SU(3): La = 17 fm, a = 0.18 fm

I. L. Bogolubsky et al., Phys. Lett. B676, 69 (2009)

- Small lattice spacing:
 - large a also changes the propagator

Positivity violation

Spectral representation

$$\mathcal{D}(\mathcal{p}^2) = \int_0^{+\infty} d\mu rac{
ho(\mu)}{\mathcal{p}^2 + \mu^2}$$

On the lattice: study the temporal correlator

$$C(t) = \int_{-\infty}^{\infty} \frac{dp}{2\pi} D(p^2) \exp(-ipt) = \int_{0}^{\infty} d\omega \rho(\omega^2) e^{-\omega t}$$

C(t) < 0

- negative spectral density
- positivity violation
- gluon confinement

$$m{C}(t) > 0$$
 says nothing about $ho(\mu)$

< □ > < 同 > < 回 > < 回 > < 回 >

Positivity violation for the gluon propagator

Already observed in lattice simulations

C. Aubin, M. C. Ogilvie, Phys. Rev D70, 074514 (2004)

(日)

A. Cucchieri, T. Mendes, A. R. Taurines, Phys. Rev. D71, 051902 (2005)

Spectral density

 Euclidean momentum-space propagator of a (scalar) physical degree of freedom

$$\mathcal{G}(\boldsymbol{
ho}^2)\equiv \langle \mathcal{O}(\boldsymbol{
ho})\mathcal{O}(-\boldsymbol{
ho})
angle$$

• Källén-Lehmann spectral representation

$$\mathcal{G}(p^2) = \int_0^\infty \mathrm{d}\mu rac{
ho(\mu)}{p^2 + \mu}\,, \qquad ext{with }
ho(\mu) \geq 0 ext{ for } \mu \geq 0\,.$$

 spectral density contains information on the masses of physical states described by the operator O

$$ho(\mu) = \sum_{\ell} \delta(\mu - m_{\ell}^2) \left| \langle 0 | \mathcal{O} | \ell_0
ight|^2 \,,$$

Spectral density

- $\mathcal{G} = \mathcal{L}^2 \hat{\rho} = \mathcal{L} \mathcal{L}^* \hat{\rho}$ where $(\mathcal{L}f)(t) \equiv \int_0^\infty ds e^{-st} f(s)$ is a Laplace transform
- inversion of Laplace transform: ill-posed problem
- Way out: Tikhonov regularization
 - ill-posed problem $y = \mathcal{K}x$
 - minimize $||\mathcal{K}\mathbf{x} \mathbf{y}|| + \lambda ||\mathbf{x}||^2$
 - $\lambda > 0$ is a regularization parameter
 - x^{λ} is the unique solution of the normal equation

$$\mathcal{K}^*\mathcal{K}\mathbf{x}^\lambda + \lambda\mathbf{x}^\lambda = \mathcal{K}^*\mathbf{y}$$

the operator $\mathcal{K}^*\mathcal{K} + \lambda$ is strictly positive, hence invertible

- Morozov discrepancy principle: choose $\overline{\lambda}$ s.t. $||\mathcal{K}x^{\overline{\lambda}} y^{\delta}|| = \delta$
 - δ: "noise of input data"
 - A unique solution $x^{\overline{\lambda},\delta}$ exists

< □ > < 同 > < 回 > < 回 > < 回 >

How-to First results

Outline

2

Gluon spectral densities

- How-to
- First results

3 Finite temperature

- Lattice setup
- Positivity violation
- Spectral density

How-to First results

Getting gluon spectral density

 $\mathcal{L}^2 \rho = D$

$$\mathcal{L}^4 \rho + \lambda \rho = \mathcal{L}^2 \mathcal{D}$$

$$\int_0^\infty \mathrm{d}t \rho(t) \frac{\ln \frac{z}{t}}{z-t} + \lambda \rho(z) = \int_0^\infty \mathrm{d}t \frac{\mathcal{D}(t)}{t+z}$$

- consider 1-loop perturbative behaviour after $p_{max}^{(latt)}$
- integrals computed using Gauss-Legendre quadrature
- discretization leads to a linear system
- IR and UV cut-offs
- lattice data (80⁴, $\beta = 6.0$) interpolated using splines

< ロ > < 同 > < 回 > < 回 > :

How-to First results

Outline

- Gluon spectral densities
 How-to
 - First results
- 3 Finite temperature
 - Lattice setup
 - Positivity violation
 - Spectral density

How-to First results

Results (preliminary)

Changing number of GL points

Reconstructed propagator

< □ > < 同 > < 回 > < 回 >

How-to First results

Results (preliminary)

Changing UV cutoff

Reconstructed propagator

◆ロト ◆聞 と ◆ 臣 と ◆ 臣 と

How-to First results

Results (preliminary)

Changing IR cutoff

Reconstructed propagator

・ロト ・聞 ト ・ ヨト ・ ヨト

Lattice setup

Outline

- - How-to
 - First results

- Finite temperature
- Lattice setup
- Positivity violation
- Spectral density

Introduction Lattice setup Gluon spectral densities Positivity violatio Finite temperature Spectral density

Getting hotter

- Gluon propagator at finite T splitted into two components
 - transverse D_T
 - Iongitudinal D_L

$$\mathcal{D}^{ab}_{\mu
u}(\hat{q}) = \delta^{ab} \left(\mathcal{P}^{T}_{\mu
u} \mathcal{D}_{T}(q_{4}^{2}, \vec{q}) + \mathcal{P}^{L}_{\mu
u} \mathcal{D}_{L}(q_{4}^{2}, \vec{q})
ight)$$

• Finite temperature on the lattice: $L_t << L_s$

$$T=\frac{1}{aL_t}$$

- Simulations: use of Chroma and PFFT libraries
- keep a constant (spatial) physical volume $\sim (6.5 \text{fm})^3$
- all data renormalized at $\mu = 4 GeV$

0. Oliveira, PJS, Acta Phys.Polon.Supp. 5 (2012) 1039, PoS(LATTICE2012)216, PoS(Confinement X)045

Finite temperature

Lattice setup

Lattice setup finite T

Temp. (MeV)	β	Ls	Lt	a [fm]	1/a (GeV)
121	6.0000	64	16	0.1016	1.943
162	6.0000	64	12	0.1016	1.943
194	6.0000	64	10	0.1016	1.943
243	6.0000	64	8	0.1016	1.943
260	6.0347	68	8	0.09502	2.0767
265	5.8876	52	6	0.1243	1.5881
275	6.0684	72	8	0.08974	2.1989
285	5.9266	56	6	0.1154	1.7103
290	6.1009	76	8	0.08502	2.3211
305	5.9640	60	6	0.1077	1.8324
305	6.1326	80	8	0.08077	2.4432
324	6.0000	64	6	0.1016	1.943
366	6.0684	72	6	0.08974	2.1989
397	5.8876	52	4	0.1243	1.5881
428	5.9266	56	4	0.1154	1.7103
458	5.9640	60	4	0.1077	1.8324
486	6.0000	64	4	0.1016	1.943

3

★御⊁ ★注⊁ ★注⊁

Lattice setup Positivity violation Spectral density

Surface plots

Transverse component

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

500

Lattice setup Positivity violation Spectral density

Outline

- 2 Gluon spectral densities
 - How-to
 - First results

Finite temperature

- Lattice setup
- Positivity violation
- Spectral density

Lattice setup Positivity violation Spectral density

Positivity violation finite T - longitudinal component

Lattice 2013

(日)

Lattice setup Positivity violation Spectral density

Positivity violation finite T - transverse component

Lattice 2013

CENTRO-FÍSICA

◆ロト ◆聞 と ◆ 国 と ◆ 国 と ○

Lattice setup Positivity violation Spectral density

Positivity violation scale – transverse component

◆ロト ◆聞 と ◆ 臣 と ◆ 臣 と

Introduction Lattice setup Gluon spectral densities Positivity violatio Finite temperature Spectral density

Outline

1 Introduction

- 2 Gluon spectral densities
 - How-to
 - First results

3

Finite temperature

- Lattice setup
- Positivity violation
- Spectral density

Introduction Latti Gluon spectral densities Posi Finite temperature Spec

Lattice setup Positivity violation Spectral density

Longitudinal propagator spectral densities

Lattice 2013

Lattice setup Positivity violation Spectral density

Conclusions and outlook

- Gluon unphysical for all T up to 500 MeV
- Access to the spectral density
 - Preliminary results
- Positivity violation scale increases with temperature
 - Gluons behave as quasi-particles for high T?

FCT Fundação para a Ciência e a Tecnologia MINISTÉRIO DA EDUCAÇÃO E CIÊNCIA

COMPLITACIONAL

Supported by FCT via project CERN/FP/123612/2011. D.D. acknowledges

financial support from the Research-Foundation Flanders (FWO

Vlaanderen). P.S. supported by FCT grant SFRH/BPD/40998/2007.