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Introduction
Equation of State of matter 
● is a relation between energy and pressure of matter

● EoS of dense baryonic matter is a key ingredient
of many interesting physics eg. heavy ion collision
supernova, neutron star.

Neutron Star
● is a compact star formed after

supernova explosion of massive star. 
● Typically,  M = 1.5 M⊙, R = 10 km. 
● Density  ρ = several  ρ0 at the center. 
● Temperature T ≃ 108 [K]  = 0.01 [MeV] 

P(E) or E (P) or E (ρ) or E (kF) or...

Mass-energy density
is about 1015 [g/cm3] !
Most dense in Universe! 

≃ 0
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Introduction
QCD phase diagram

● NS observation provides information of EoS of baryonic 
matter at the          region on the QCD phase-diagram.
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QCD phase diagram

● NS observation provides information of EoS of baryonic 
matter at the          region on the QCD phase-diagram.

● Perhaps, it touches the deconfined QGP phase.

?



5

Introduction
QCD phase diagram

● NS observation provides information of EoS of baryonic
matter at the          region on the QCD phase-diagram.

● Perhaps, it touches the deconfined QGP phase.
● Probably, it goes to finite strangeness direction.
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Introduction
Today, I try to 

Our approach
● We put one step                     , and we extract them

from QCD by doing numerical simulations on the lattice.
● At the later stages, we follow standard way.

We want to answer:
● Can QCD reproduce know features of nuclear matter ?
● What does QCD predict about hyperons in medium ?
● How about EoS of NS matter & Mmax of neutron star ?

Quark + gluon
     (QCD)

Baryonic
matter 

Neutron
Stars

General BB
interactions
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Introduction
Today, I try to 

Our approach
● We put one step                     , and we extract them

from QCD by doing numerical simulations on the lattice.
● At the later stages, we follow standard way.

We want to answer:
● Can QCD reproduce know features of nuclear matter ?
● What does QCD predict about hyperons in medium ?
● How about EoS of NS matter & Mmax of neutron star ?
● We can attack and answer these questions in principle. However,

we have many limitations at present. So, my talk is just a first step. 

Quark + gluon
     (QCD)

Baryonic
matter 

Neutron
Stars

General BB
interactions

LQCD
Standard

Standard



9

Outline

1. Introduction

2. General BB Interaction from QCD

3. Nuclear Matter EoS from QCD

4. Neutron Stars from QCD

5. Hyperon in medium from QCD

6. Summary and Plan
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General BB Interaction

from QCD
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LQCD simulation at SU(3)F Limit
● I've carried out LQCD simulations at flavor SU(3) limits,

in order to capture essential feature of BB interaction.

● Any BB interaction (e.g. NN and ΛN) can be reconstructed 
from interactions in these six basis and C.G. coefficients.

K_uds  M_P.S.  [MeV]  M_Bar  [MeV]

0.13660 1170.9(7) 2274(2)

0.13710 1015.2(6) 2031(2)

0.13760   836.8(5) 1749(1)

0.13800   672.3(6) 1484(2)

0.13840   468.9(8) 1161(2)

   size    β   CSW  a  [fm] L  [fm]

323 x 32  1.83  1.761 0.121(2)   3.87

● Iwasaki gauge & Wilson quark.
● Thanks to PACS-CS collaboration

for their DDHMC/PHMC code.

8 × 8= 27 + 8s + 1 + 10 * + 10 + 8a

Irreducible multiplet   =In this limit, 

Convenient basis to 
describe interaction

Huge reduction of computation time
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● Extracted by

u+d u+d+s

1S0

3S1
3D1

BB pot. in the flavor irr. basis

V ( r⃗ ) =
1
2μ
∇

2
ψ( r⃗ , t)
ψ( r⃗ , t )

−

∂
∂ t
ψ( r⃗ , t)

ψ( r⃗ , t)
− 2M B ψ( r⃗ , t): NBS W.F.

Talk by T. Doi 

@SU(3)F limit
Mps = 837 MeV 

HAL QCD
imaginary time method
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LQCD NN potentials

● Left:  NN 1S0 potential at five quark mass.  (27-plet)
● Repulsive core & attractive pocket grow as mq decrease.

● Right:  NN potential in partial waves at the lightest mq.
● Best χ2 fit of data which gives central value of observable.
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Nuclear Matter

from QCD
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Equation of State
● Ground state of interacting infinite nucleon system

● Relativistic Mean Field
● Fermi Hyper-Netted Chain

● For SNM, most important feature is the saturation.
● For PNM or NSM,  the slope at  large kF is important.

A. Akmal, V.R. Phandharipande, D.G. Ravenhall
Phys. Rev. C 58 (1998) 1804

J. D. Walecka, Ann. Phys. 83 (1974) 491 

Symmetric
Nuclear
Matter

Pure
Neutron
Matter

They used
phenomenological

Argonne NN force &

“Urbana” NNN force.

P ∝
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Brueckner-Hartree-Fock
● Ground state energy in BHF framework

● G-matrix

● Single particle spectrum & potential

● Angle averaged Q-operator, Continuous choice w/ parabolic approximation

E 0 = γ∑
k

k F

k 2

2 M
+

1
2 ∑

i

N ch

∑
k ,k '

k F

〈 G i (e (k )+e (k ' )) 〉A

〈k 1 k 2∣G (ω)∣k3 k4 〉 = 〈k1 k 2∣V ∣k 3 k4 〉 +

∑
k 5,k 6

〈k1 k 2∣V ∣k 5 k 6 〉Q (k5, k6)〈k 5 k 6∣G (ω)∣k 3 k 4 〉

ω−e (k 5)−e (k6 )

U (k ) =∑
i
∑

k '≤k F

〈k k ' ∣G i (e (k )+e (k ' ))∣k k ' 〉A

e (k ) =
k 2

2 M
+U (k )

G-matrix Potential V
Pauli

K.A. Brueckner and J.L.Gammel
Phys. Rev. 109 (1958) 1023

M.I. Haftel and F. Tabakin, 
Nucl. Phys.  A158(1970) 1-42
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i
∑

k '≤k F

〈k k ' ∣G i (e (k )+ e (k ' ))∣k k ' 〉A

e (k ) =
k 2

2 M
+ U (k )

G-matrix Potential V
Pauli

K.A. Brueckner and J.L.Gammel
Phys. Rev. 109 (1958) 1023

M.I. Haftel and F. Tabakin, 
Nucl. Phys.  A158(1970) 1-42

LQCD  VNN
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Matter EoS from QCD

● SNM is bound and the saturation occurs at MPS = 469 MeV.
● Saturation is very delicate against change of quark mass.

● PNM is unbound as normal.
● PNM become stiff at high density as quark mass decrease.

SNM PNM



19

Comparison to APR

● Deviation from empirical ones due to heavy u,d quark.

● LQCD curve approaches to empirical one as mq decrease.

SNM PNM

optimistically?
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Neutron Stars

from QCD
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Neutron Stars  (spherical & non-rotating & stable)

● Tolman-Oppenheimer-Volkoff equation

● with P(E)  (EoS)  of a cold Fermi gas of neutrons.

d P (r )
d r

=−
G (E (r )+ P (r )) (M (r )+ 4 π r 3 P (r ))

r (r−2 G M (r ))

d M (r )
d r

= 4 π r 2 E (r )
Gravitational constant
G = 6.6743 [m3 kg−1 s−2]

J. R. Oppenheimer and G. M. Volkoff
Phys. Rev.  55 (1939) 374

R. C. Tolman, Phys Rev. 55(1939) 364

P (r ) : Pressure
E (r ) : Mass­energy density
M (r ): Enclosed mass
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Neutron Stars  (spherical & non-rotating & stable)

● Tolman-Oppenheimer-Volkoff equation

● with P(E)  (EoS)  of a cold Fermi gas of neutrons.

d P (r )
d r

=−
G (E (r )+ P (r )) (M (r )+ 4 π r 3 P (r ))

r (r−2 G M (r ))

d M (r )
d r

= 4 π r 2 E (r )
Gravitational constant
G = 6.6743 [m3 kg−1 s−2]

J. R. Oppenheimer and G. M. Volkoff
Phys. Rev.  55 (1939) 374

R. C. Tolman, Phys Rev. 55(1939) 364

Nuclear force

P (r ) : Pressure
E (r ) : Mass­energy density
M (r ): Enclosed mass

QCD is essential for NS!

Let us apply our LQCD EoS
to neutron stars.
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Neutron Star Matter
● For the moment, I restrict component to n, p, e− and μ−.

● Asymmetric nuclear matter with the parabolic approx.

● Cold Fermi gas for lepton

● Chemical equilibrium and charge neutrality

● Particle fractions xi and P(E) are determined.        TOVeq.

E sym(ρ) =
E 0

PNM

A
(ρ) −

E 0
SNM

A
(ρ)

E 0

A
(ρ , x ) =

E 0
SNM

A
(ρ) + β 2 E sym(ρ)

β = 1− 2 x

ρ = ρn + ρp , x = ρp / ρ

ρp = ρe + ρμμn −μp =μe =μμ

μe = εF
e
= k F

e
= (3 π2ρe )

(1 /3)

[μn − μp ](ρ ,x ) = 4β E sym(ρ)

μμ = εF
μ
= √mμ

2
+ (k F

μ
)

2

We consider hyperons later.
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● Mass-radius curve of neutron stars at five value of mq.
● Mmax  = 0.12 – 0.52  [MSun]  for Mps = 1171 – 469 [MeV].
● due to heavy nucleon and weaker repulsion at short distance.
● Mmax  will be much bigger with lighter u,d quark.

Neutron Star M-R relation

MN = 2274 MeV
MN = 2031 MeV
MN = 1749 MeV
MN = 1484 MeV
MN = 1161 MeV

Crust part is ignored.

Uniform matter only.
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Maximum mass of Neutron Star

● Blue line shows a function f(MPS) fitted to data.
● This suggests that MNS

max = 1.2 to 2.2 Msun at MPS = 135 MeV.
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Hyperon in medium

from QCD



27

Hyperon single particle potential
● Hyperon s.p. potential UY(k)

● Model prediction:   AV18 NN + Nijmegen YN (ESC08c)

● UΛ(0) ≈ − 20 [MeV], UΣ > 0 in both the nuclear matter. 

YN interactions up to 
1S0 , 3SD1  channels
are included.

PNM SNM

e Y (k ) =
k 2

2 M Y

+ U Y (k )Spectrum in the medium

At the normal
nuclear density
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BHF for Hyperons
● Hyperon s.p. potential in the BHF framework

● YN G-matrix

U Y (k ) = ∑
N=n ,p
∑
SLJ
∑

k '≤k F

〈k k '∣G (YN )(YN )
SLJ

(eY (k )+ eN (k ' )) ∣k k ' 〉

G
(Σ

­
n)(Σ

­
n)

SLJ G
(Σ

+ p )(Σ+ p)
SLJ

2S+ 1 L J =
1S0 , 3 S 1 , 3 D1 , 1 P 1 , 3 P J ⋯

Q=0 Q=+1

Q=−1 Q = +2

(
G (Λn)(Λn )

SLJ G
(Λn)(Σ0 n ) G

(Λn )(Σ­ p)

G
(Σ

0 n )(Λn) G
(Σ

0 n)(Σ0 n ) G
(Σ

0 n)(Σ­ p)

G
(Σ

­ p)(Λn) G
(Σ

­ p)(Σ0 n) G
(Σ

­ p)(Σ­ p )
) (

G (Λp)(Λp)
SLJ G

(Λp )(Σ0 p ) G
(Λp )(Σ+ n)

G
(Σ

0 p)(Λp) G
(Σ

0 p )(Σ0 p ) G
(Σ

0 p)(Σ+ n)

G
(Σ

+n )(Λp) G
(Σ

+ n )(Σ0 p ) G
(Σ

+ n)(Σ+ n)
)

in our study

M. Baldo, G.F. Burgio, H.-J. Schulze,
Phys. Rev. C58, 3688 (1998)

by suppressing momentum indices
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MBPhys  +  AV18 NN  +  LQCD YN,YY 

● with YN & YY potentials from LQCD at a SU(3)F limit.
● We see that  UΛ(k)  <  UΞ(k)  <  UΣ(k)  .
● LQCD UY(k)  are deeper than model predictions and data.

PNM SNM

due to heavy u,d quark?  Models are wrong?
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Summary and Plan
We've tried to reach Neutron Stars from QCD.
● We studied BB interaction from LQCD.

– We extracted BB potentials in 6 flavor irreducible basis.
● We studied nuclear matter in the BHF theory.

– We could reproduce the saturation feature of SNM.
● We studied neutron stars solving TOV eq.

– We obtained mq dependence of NS M-R relation. 
● We studied hyperons in nuclear medium.

Plan
● Study NS with hyperons according to QCD. 
● Inclusion of P,D-wave BB and BBB interactions.
● LQCD simulations with realistic quark at 京-computer.
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Thank you!!
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