Multi-nucleon bound states in N_f=2+1 lattice QCD

Lattice 2013

July 29 Mainz

T. Yamazaki^{1),} K.-I. Ishikawa²⁾, Y. Kuramashi^{3,4)}, A. Ukawa³⁾

- 1) Kobayashi-Maskawa Institute, Nagoya University
- 2) Grad School of Science, Hiroshima University
- 3) Center for Computational Sciences, University of Tsukuba
- 4) Advanced Institute for Computational Science, RIKEN
 - Aims and motivations
 - Issues
 - Strategy
 - Results
 - Summary

- Only method with true reliability to discuss unnatural nuclei with large neutron/proton ratio
- Only method with true reliability to discuss the fate of nuclei if the standard model parameters (coupling constants, quark masses, etc) were different from what they are in Nature

Issue (I): Bound state or scattering state?

- Measurement for a single spatial volume cannot distinguish a bound state from a scattering state
- Use multiple volumes to distinguish the infinite volume limit
- Can also make a cross check with excited state

Some details of measurements									
 Smeared quark source ψ(r) = A exp(-Br) Smearing parameter B adjusted to ensure an early and good plateau for nucleon (examples shown later) 									
 Multiple source locations for each configuration to increase statistics Multiple times slices Multiple spatial locations at each time slices Use all four directions as time for <i>space-time symmetric L⁴ lattices</i> 									

Run statistics

\square m_{π}=0.51GeV(done)

L	#conf	#sep	#bin	#meas/conf	M _π (GeV)	m _N (GeV)
32	200	20	10	192	0.5109(16)	1.318(4)
40	200	10	10	192	0.5095(8)	1.314(4)
48	200	10	20	192	0.5117(9)	1.320(3)
64	190	10	19	256	0.5119(4)	1.318(2)

 \square m_{π}=0.30GeV (still running)

L	#conf	#sep	#bin	#meas/conf	M _π (GeV)	m _N (GeV)
48	360	10	20	576	0.3004(15)	1.058(2)
64	160	10	10	384	0.2985(8)	1.057(2)

