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Introduction

Quark gluon plasma: a phase of matter when T is raised
up to 150, 000 times the one at the core of the sun.

When the temperature reaches T > Tc quarks and gluons
becomes the degrees of freedom → QGP

Why do we study the QGP?

Dynamic properties of QGP are relevant to constrain early
universe cosmology models

Understand the output of heavy ion collisions experiments
at RHIC and CERN
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Heavy Ion Collisions

Effective theories to study the evolution of the QGP:
→ Input parameters: transport coefficients.

Experimental evidence for a strongly coupled QGP:
→ perturbation theory fails (see results for η).

First principles calculation is needed:
→ Lattice QCD.
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ūγµu− 1

3
d̄γµd

Euclidean Correlator ⇒ spectral function

Gµν(τ) =

∫
d3x 〈 jµem(τ,x)jνem(0,0)† 〉

=

∫ ∞
0

dω

2π
K(ω, τ) ρµν(ω,p),

Kubo’s Formula for Conductivity σ

σ = lim
ω→0

1

6

ρii(ω)

ω
⇒ Important for evolution of

EM fields in the QGP



Transport Coefficients On the Lattice Results

Electrical Conductivity

Electromagnetic current (only up/down contribution)

jµem =
2

3
ūγµu− 1

3
d̄γµd

Euclidean Correlator ⇒ spectral function

Gµν(τ) =

∫
d3x 〈 jµem(τ,x)jνem(0,0)† 〉

=

∫ ∞
0

dω

2π
K(ω, τ) ρµν(ω,p),

Kubo’s Formula for Conductivity σ

σ = lim
ω→0

1

6

ρii(ω)

ω
⇒ Important for evolution of

EM fields in the QGP

Non-zero σ forces magnetic fields to freeze in the plasma.
[K. Tuchin, 2013]
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Clover Action - Nf = 2 + 1

M̂ [U ] = m̂0 + γtŴt +
1

γf

∑
s

γsŴs

− ct
2

∑
s

σtsF̂ts −
cs

2γg

∑
s<s′

σss′ F̂ss′

[2009, Lin, Edwards, Joo]

Bare gauge/fermion anisotropy γg, γf
→ Tuned to give a fixed value for ξ = as/at = 3.5

O(a) Improved with clover term
→Tree-level conditions: ct = 0.9027, cs = 1.5893

Stout-smeared gauge links:
→ ρ = 0.15, nρ = 2



Transport Coefficients On the Lattice Results

Clover Action - Nf = 2 + 1

M̂ [U ] = m̂0 + γtŴt +
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Configurations

Ns Nτ T [MeV] T/Tc NCFG NSRC

32 16 350 1.89 1059 4
24 20 280 1.52 1001 4
32 24 235 1.26 500 4
32 28 201 1.08 502 4
32 32 176 0.95 501 4
24 36 156 0.84 501 4
24 40 140 0.76 523 4
32 48 117 0.63 601 1

Two spatial lattice extension available Ns = 24, 32

as = 0.1227(8) fm and at = 0.03506(23) fm

ms physical and mu,d with Mπ/Mρ = 0.446(3)

T = 120 ∼ 350 MeV, with Tc = 186(2) MeV
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Conserved Current on the Lattice

Conserved vector current – κ4 = 1
2 , κi = 1

2γf

V C
µ (n) = κµ

[
ψ̄(n+ µ̂)(1 + γµ)U†

µ(n)ψ(n)

−ψ̄(n)(1− γµ)Uµ(n)ψ(n+ µ̂)

]
Ward identity protects the current from renormalization

ZV C ≡ 1

Improvement pattern given by

V CI
µ − V C

µ ≡
1

4

∑
ρ

(δρ,0 + νδρ,i)aρ∂
−
ρ ψ̄(x)σµρ ψ(x)

p→0−−−→ 0
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Conserved Current - Spatial Component

Gii(τ) =
∑

~y〈V C
i (~x, x0)V C

i (~y, τ + x0)† 〉
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Conserved Current - Volume Effects

Gii(τ) =
∑

~y〈V C
i (~x, x0)V C

i (~y, τ + x0)† 〉
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An ill posed problem

Gii(τ) =

∫ ∞
0

dω ρ(ω)
coshω(β2 − τ)

sinhβω/2

∼ O(10) ∼ O(1000)

Standard χ2-fit fails: non unique solution.

Need to use Bayesian probability theory.
[Karsch et al. 2002] [Gupta, 2004]
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Bayesian Probability Theory

Conditional Probability

P [ρ|DH] =
P [D|ρH]P [ρ|H]

P [D|H]

P [D|ρH] - likelihood function exp(−L)

P [D|H] - normalization

L =
1

2

∑
i,j

(G(τi)− Fi)C−1
ij (G(τj)− Fj)

Fj = ∆ω
∑Nω

i
ρiKij
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Bayesian Probability Theory

Conditional Probability

P [ρ|DH] =
P [D|ρH]P [ρ|H]

P [D|H]

P [D|ρH] - likelihood function exp(−L)

P [D|H] - normalization

P [ρ|H] - prior probability: Entropy exp(−αS)

S =

∫ ∞
0

dω

2π

[
ρ(ω)−m(ω)− ρ(ω) ln

ρ(ω)

m(ω)

]

Default Model: m(ω) = m0ω(b+ ω) finite intercept of ρ(ω)/ω
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Bayesian Probability Theory

Conditional Probability

P [ρ|DH] ∝ exp (−L+ αS)

P [D|ρH] - likelihood function exp(−L)

P [D|H] - normalization

P [ρ|H] - prior probability: Entropy exp(−αS)

Solution given by δP [ρ|DH] = 0 :

Modification of Bryan’s algorithm [Aarts et al. - 2007]

⇒ Fixes kernel instabilities at low ω
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Spectral Functions from MEM
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Default Model Dependence

We check the dependence of the result on b:

m(ω) = m0ω(b+ atω)
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Stability Tests - ∆τ

Comparing results with same τ -slices but different T
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Stability Tests - ∆τ

Comparing results with same τ -slices but different T
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Stability Tests - Anisotropy

Comparing results when using only a subset of τ -slices
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Conductivity - Final Result
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Conclusions

Electrical Conductivity plays an important role in the
evolution of EM fields in Heavy Ion Collisions;

Inside QGP phase results comparable with previous ones;

First analysis with conserved current of conductivity with
different temperatures;

New observation: increase of σ/T already in the confined
phase.

Next:

Strange quark contribution;

Magnetic Field influence.
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Thanks





Strongly Coupled QGP

Elliptic flow

v2 = 〈p
2
X − p2Y
p2X + p2Y

〉

v2 found very large: a
direct measure of
collectivity.
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[Luzum, Romatschke, 2008] 

Dissipative hydrodynamic: v2(PT )↔ η shear viscosity

η/s found smaller than other system:
→ strongly interacting.
→ perturbation theory fails.

First principle calculation of transport coefficients is needed:
→ Lattice QCD.



Conserved Current - Temporal Component
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Spectral Functions from MEM
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Retarded Correlator
Hydrodynamics Evolution



Linear Response

Classical external source coupled to O

H(t) = H0 −Hext(t) with Hext =

∫
dx f(x, t)O(x, t)

The evolution for O is

i
∂

∂t
O(t) = −[H(t), O(t)]

To linear order in f

δ 〈O(x, t)〉 =

∫ t

−∞
dt′dx′G(x− x′, t− t′)f(x′, t′) + O(f2)

where G(x, t) = i 〈[O(x, t), O(0, 0)]〉



Linear Response

Classical external source coupled to O

H(t) = H0 −Hext(t) with Hext =

∫
dx f(x, t)O(x, t)

The evolution for O is

i
∂

∂t
O(t) = −[H(t), O(t)]

To linear order in f +
∫

dtdx eiωt−x·k

δ 〈Õ(k, ω)〉 = G̃R(ω,k)f̃(ω,k)

where G̃R(ω,k) = i
∫∞

0 dt eiωt−x·k 〈[O(t,x), O(0, 0)]〉



Particle Number Diffusion

Perturbation of Particle number

Hµ = H0−
∫

dxµ(x, t)n(x, t) with µ(x, t) = µ(x)eεtθ(−t)

Hydrodynamics: conservation law + constitutive equation

∂tn+∇ · j = 0 j = −D∇n (Fick’s Law)

Diffusion equation

∂tn(x) = D∇2n(x) → ñ(ω,k) =
n(0,k)Dk2

−iω +Dk2

Static susceptibility

χNs = n(0,x) =
∫∞

0 dt e−εt
∫

dx′Gnn(x− x′, t)µ(x′)
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Kubo’s Formula

Substituting f ← µ and O ← n in the linear response for
δ 〈Õ(k, ω)〉

G̃nnR (ω,k) =
(Dk2)2 + iωDk2

ω2 + (Dk2)2

Spectral function

ρnn(ω,x) =
1

2πi

∫ ∞
−∞

dt eiωt 〈[n(x, t), n(0, 0)]〉 =
1

π
Im GnnR (ω,x)

Diffusion coefficient extracted by

DχNs = π lim
ω→0

lim
k→0

ρL(ω,k)

ω



Technical Issues

SVD Decomposition of the Kernel [Bryan, 1989]

KT = UWV T with W = diag(w1, . . . , wNω)

but wNs+i � 1 ⇒ ~ρ∗ =
∑Ns

i=0
bi~ui with Ns < Nτ � Nω

Bryan approach: integrate over all α

ρout =

∫
dα ρα(ω)P [α|DHm]

⇒ Fix Kernel instabilities at low ω [Aarts, Allton, Hands, Foley,

2007]

K ∼
ω→0

1

ω
⇒ K(ω, τ) =

ω

2T
K(ω, τ), ρ(ω) =

2T

ω
ρ(ω)
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Estimates of η

Experiments [Teaney, 2009](η
s

)
pheno

. 0.40

Perturbative [Arnold, Moore, Yaffe, 2000](η
s

)
leading log

=
c

g4 log(1/g)
≈

αs=0.15
2.0

SYM at infinite coupling [Policastro, Son, Starinets, 2001](η
s

)
N=4,λ=∞

=
1

4π
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