

Temperature dependence of the electrical conductivity and dilepton rates from hot quenched lattice QCD

# **Olaf Kaczmarek**

University of Bielefeld

in collaboration with H.-T.Ding, A.Francis, F.Karsch, E.Laermann, S.Mukherjee, M.Müller, W.Soeldner

> Lattice 2013 Mainz 29.07.2013

## Motivation – PHENIX/STAR results for the low-mass dilepton rates

pp-data well understood by hadronic cocktail

large enhancement in Au+Au between 150-750 MeV

indications for thermal effects!?

Need to understand the contribution from QGP  $\rightarrow$  spectral functions from lattice QCD



## **Dileptonrate directly related to vector spectral function:**

$$\frac{\mathrm{d}W}{\mathrm{d}\omega\mathrm{d}^3p} = \frac{5\alpha^2}{54\pi^3} \frac{1}{(\omega^2 - \vec{p}^2)(e^{\omega/T} - 1)} \ \rho_{\mathbf{V}}(\omega, \vec{\mathbf{p}}, \mathbf{T})$$

## Vector correlation functions at high temperature

$$G(\tau, \vec{p}, T) = \int_{0}^{\infty} \frac{\mathrm{d}\omega}{2\pi} \rho(\omega, \vec{p}, T) K(\tau, \omega, T) \qquad K(\tau, \omega, T) = \frac{\cosh\left(\omega(\tau - \frac{1}{2T})\right)}{\sinh\left(\frac{\omega}{2T}\right)}$$

Lattice observables:

$$G_{\mu\nu}( au, \vec{x}) = \langle J_{\mu}( au, \vec{x}) J_{\nu}^{\dagger}(0, \vec{0}) \rangle$$

$$\begin{array}{c|c} & \mathbf{q} \\ \Gamma_{\mathbf{H}} & \mathbf{F}_{\mathbf{H}} \\ (0,0) & \mathbf{\bar{q}} \end{array} \begin{array}{c} & \Gamma_{\mathbf{H}} \\ (\tau,\mathbf{X}) \end{array} \end{array}$$

$$J_{\mu}(\tau, \vec{x}) = 2\kappa Z_{V} \bar{\psi}(\tau, \vec{x}) \Gamma_{\mu} \psi(\tau, \vec{x}) \qquad \text{local, non-conserved current,} \\ \text{needs to be renormalized} \\ G_{\mu\nu}(\tau, \vec{p}) = \sum_{\vec{x}} G_{\mu\nu}(\tau, \vec{x}) e^{i\vec{p}\vec{x}} \qquad \text{only } \vec{p} = 0 \text{ used here}$$

How to extract spectral properties from correlation functions?

### Free theory (massless case):

free non-interacting vector spectral function (infinite temperature):

$$\rho_{00}^{free}(\omega) = 2\pi T^2 \omega \delta(\omega)$$
  
$$\rho_{ii}^{free}(\omega) = 2\pi T^2 \omega \delta(\omega) + \frac{3}{2\pi} \omega^2 \tanh(\omega/4T)$$

 $\delta$ -functions exactly cancel in  $\rho_V(\omega)$ =- $\rho_{oo}(\omega)$ + $\rho_{ii}(\omega)$ 

## With interactions (but without bound states):

while 
$$\rho_{00}$$
 is protected, the  $\delta$ -function in  $\rho_{ii}$  gets smeared:  
Ansatz:  
 $\rho_{00}(\omega) = 2\pi \chi_q \omega \delta(\omega)$   
 $\rho_{ii}(\omega) = 2\chi_q c_{BW} \frac{\omega \Gamma/2}{\omega^2 + (\Gamma/2)^2} + \frac{3}{2\pi} (1 + \kappa) \omega^2 \tanh(\omega/4T)$   
Ansatz with 3-4 parameters:  $(\chi_q), c_{BW}, \Gamma, \kappa$   
["Thermal dilepton rate and electrical conductivity...",

H.T.-Ding, OK et al., PRD83 (2011) 034504]

N

**Electrical Conductivity**  $\iff$  slope of spectral function at  $\omega$ =0 (Kubo formula)

$$\frac{\sigma}{T} = \frac{C_{em}}{6} \lim_{\omega \to 0} \frac{\rho_{ii}(\omega, \vec{p} = 0, T)}{\omega T}$$

$$C_{em} = e^2 \sum_{f=1}^{n_f} Q_f^2 = \frac{5/9 \ e^2}{6/9 \ e^2} \ \text{for} \ n_f = 2$$
  
 $6/9 \ e^2 \ \text{for} \ n_f = 3$ 

Using our Ansatz for  $\rho_{ii}(\omega)$ :

$$\frac{\sigma}{T} = \frac{2}{3} \frac{\chi_q}{T^2} \frac{T}{\Gamma} c_{BW} C_{em}$$

## Vector correlation function on large & fine lattices

[H.T.-Ding, OK et al., PRD83 (2011) 034504] Quenched SU(3) gauge configurations at  $T/T_c=1.5$  (separated by 500 updates)

Lattice size  $N_{\sigma}^{3} N_{\tau}$  with  $N_{\sigma} = 32 - 128$  $N_{\tau} = 16, 24, 32, 48$  Temperature:  $T = \frac{1}{aN_{\tau}}$ 

Non-perturbatively O(a) clover improved Wilson fermions

Non-perturbative renormalization constants

Volume dependence

Quark masses close to the chiral limit,  $\kappa \simeq \kappa_c \Leftrightarrow m_{\overline{MS}}/T[\mu=2GeV] \approx 0.1$ 

| $N_{\tau}$ | $N_{\sigma}$ | $\beta$ | $c_{SW}$           | $\kappa$ | $Z_V$ | $1/a[{ m GeV}]$ | $a[\mathrm{fm}]$ | # conf |  |  |  |  |
|------------|--------------|---------|--------------------|----------|-------|-----------------|------------------|--------|--|--|--|--|
| 16         | 32           | 6.872   | 1.4124             | 0.13495  | 0.829 | 6.43            | 0.031            | 60     |  |  |  |  |
| 16         | 48           | 6.872   | 1.4124             | 0.13495  | 0.829 | 6.43            | 0.031            | 62     |  |  |  |  |
| 16         | 64           | 6.872   | 1.4124             | 0.13495  | 0.829 | 6.43            | 0.031            | 77     |  |  |  |  |
| 16         | 128          | 6.872   | 1.4124             | 0.13495  | 0.829 | 6.43            | 0.031            | 129    |  |  |  |  |
| 24         | 128          | 7.192   | 1.3673             | 0.13440  | 0.842 | 9.65            | 0.020            | 156    |  |  |  |  |
| 32         | 128          | 7.457   | 1.3389             | 0.13390  | 0.851 | 12.86           | 0.015            | 255    |  |  |  |  |
| 48         | 128          | 7.793   | 1.3104             | 0.13340  | 0.861 | 19.30           | 0.010            | 431    |  |  |  |  |
| Cut        | -off de      | pendenc | close to continuum |          |       |                 |                  |        |  |  |  |  |



**PRACE-Project:** 

Thermal Dilepton Rates and Electrical Conductivity in the QGP

(JUGENE Bluegene/P in Jülich)

|              | $1.1 \ T_c$ | $1.2 T_c$ |         |          |          |                  |        |
|--------------|-------------|-----------|---------|----------|----------|------------------|--------|
| $N_{\sigma}$ | $N_{	au}$   | $N_{	au}$ | $\beta$ | $\kappa$ | 1/a[GeV] | $a[\mathrm{fm}]$ | #Confs |
| 96           | 32          | 28        | 7.192   | 0.13440  | 9.65     | 0.020            | 250    |
| 144          | 48          | 42        | 7.544   | 0.13383  | 13.21    | 0.015            | 300    |
| 192          | 64          | 56        | 7.793   | 0.13345  | 19.30    | 0.010            | 240    |

study of T-dependence of dilepton rates and electrical conductivity

fixed aspect ratio  $N_{\sigma}/N_{\tau}$  = 3 to allow continuum limit at finite momentum:

$$\frac{\vec{p}}{T} = 2\pi \vec{k} \frac{N_{\tau}}{N_{\sigma}}$$

constant physical volume (1.9fm)<sup>3</sup>

### **Continuum extrapolation**



cut-off effects visible at all distances but

well defined continuum limit on the correlator level

well behaved continuum correlator down to small distances

approaching the correct asymptotic limit for  $\tau \rightarrow 0$ 

### **Continuum extrapolation**



cut-off effects visible at all distances but

well defined continuum limit on the correlator level

well behaved continuum correlator down to small distances

approaching the correct asymptotic limit for  $\tau \rightarrow 0$ 

### Use our Ansatz for the spectral function

$$\rho_{00}(\omega) = 2\pi \chi_q \omega \delta(\omega)$$
  

$$\rho_{ii}(\omega) = 2\chi_q c_{BW} \frac{\omega \Gamma/2}{\omega^2 + (\Gamma/2)^2} + \frac{3}{2\pi} (1+\kappa) \omega^2 \tanh(\omega/4T)$$

## and fit to the continuum extrapolated correlators



all three temperatures are well described by this rather simple Ansatz

#### Use our Ansatz for the spectral function

$$\rho_{00}(\omega) = 2\pi \chi_q \omega \delta(\omega)$$
  

$$\rho_{ii}(\omega) = 2\chi_q c_{BW} \frac{\omega \Gamma/2}{\omega^2 + (\Gamma/2)^2} + \frac{3}{2\pi} (1+\kappa) \omega^2 \tanh(\omega/4T) \times \Theta(\omega_0, \Delta_\omega)$$



### electrical conductivity

#### T-dependence of the electrical conductivity:

$$\frac{\sigma}{T} = \frac{C_{em}}{6} \lim_{\omega \to 0} \frac{\rho_{ii}(\omega, \vec{p} = 0, T)}{\omega T}$$



similar studies using dynamical clover Wilson (w/o continuum limit): A.Amato et al., arXiv:1307.6763 B.B.Brandt et al., JHEP 1303 (2013) 100 previous studies using staggered fermions (need to distinguish  $\rho_{even}$  and  $\rho_{odd}$ ): S.Gupta, PLB 597 (2004) 57 G.Aarts et al., PRL 99 (2007) 022002

#### **Dileptonrate directly related to vector spectral function:**

$$\frac{\mathrm{d}W}{\mathrm{d}\omega\mathrm{d}^3p} = \frac{5\alpha^2}{54\pi^3} \frac{1}{\omega^2(e^{\omega/T}-1)} \ \rho_{\mathbf{V}}(\omega,\mathbf{T})$$



#### Non-zero momentum



#### indications for non-trivial behavior of spectral functions at small frequencies:



## **Pseudo-scalar channel**



#### in contrast to the vector channel

no transport peak expected in the pseudo-scalar channel

still strong correlations visible in the pseudo-scalar channel

spectral function still needs to be determined!

## **Conclusions:**

Detailed knowledge of the vector correlation function in the region  $1.1 \le T/T_c \le 1.5$ 

->> continuum extrapolation of correlation function and thermal moments

continuum G<sub>V</sub>( $\tau$  T) well reproduced by **Breit-Wigner plus continuum** Ansatz for  $\sigma_V(\omega)$  in the temperature region  $1.1 \le T/T_c \le 1.5$ 

**Dilepton rate** approaches leading order Born rate for  $\omega/T \ge 4$ enhancement at small  $\omega/T$ 

## Outlook:

include HTL result for  $\sigma_V(\omega)$  at large  $\omega/T$  in the Ansatz

vector correlation function at non-zero momentum

especially close to  $T_c$  effects of dynamical quarks need to be included