A property of fermions at finite densities by a reduction formula of fermion determinant

K. Nagata⁽¹⁾, S. Hashimoto⁽¹⁾, A. Nakamura⁽²⁾ ⁽¹⁾KEK, Theory Center, ⁽²⁾Hiroshima University

This talk is based on KN, arXiv:1204.6480 KN, Nakamura, Motoki, PoS LATTICE2012 (2012) 094 KN, Motoki, Nakagawa, Nakamura, Saito, PTEP01A103('12)

Introduction

 QCD at low-T and finite-μ is a challenge for lattice simulations: the puzzle about a value of μ at T=0 where n_q or <qbar q> start to change.[e.g.Gibbs('86), Glasgow group('91, '96)]

$$\mu_c = m_\pi/2 \neq m_N/3$$

- The early onset problem was discussed in
 - a propagator matrix [Gibbs('86), Glasgow group(e.g. '91, '96), etc]

$$am_{\pi} = -Nt^{-1} \ln \max_{\lambda_n < 1} |\lambda_n|^2$$

- $D(\gamma_0 D)$ in isospin μ [Davies, Klepfish '90, Cohen('04)] $\gamma_0(D+m)|\psi\rangle = \epsilon |\psi\rangle$ $\epsilon_{\min} = m_{\pi}/2$
- We need further investigation of early onset problem to study low-T regions in lattice simulations

Lattice 2013, Mainz, July28-Aug03

Introduction

 We explain the early onset problem in terms of a Fermi distribution function obtained from quark number operator using a reduction formula.

Reduction formula

- Reduction formula is a method to calculate the temporal part of the fermion determinant det Δ
 - for staggered and Wilson fermions

[Gibbs ('86), Hasenfratz & Toussaint('92), Adams('03, '04), Borici('04), KN&AN('10), Alexandru &Wenger('10)]

$$\det \Delta = \xi^{-N_{\rm red}/2} C_0 \det(\xi + Q)$$
$$\xi = e^{-\mu/T}$$

✓ Q and C_0 are functions of link variables ✓ $N_{\rm red}$ =12 Ns³

Reduction formula

• Eigenvalues λ of Q

- pair (γ_5 -hermiticy)

 $\lambda_n \leftrightarrow 1/\lambda_n^*$

- gap (for finite quark mass) $||\lambda| - 1| \neq 0$

Gap in spectrum of Q

- The gap size is related to the pion mass for large Nt.
- Onset of n_q is closely related to the gap for lager Nt. [Gibbs('86), Glasgow group('91, '97), etc]

$$am_{\pi} = -N_t^{-1} \ln \max_{|\lambda_n| < 1} |\lambda_n|^2$$
$$am_{\pi} = \lim_{N_t \to \infty} \left(-\frac{1}{N_t} \ln \left\langle c \left| \sum_{n=1}^{3V} \lambda_n \right|^2 \right\rangle \right)$$

Gibbs('86) & Fodor, Szabo, Toth('07) [We assume they are equivalent at T=0.]

Fermion determinant

• Fermion determinant can be written as

$$\det \Delta(\mu) = C_0 \xi^{-N_r/2} \prod_{n=1}^{N_r} (\lambda_n + \xi) \qquad \lambda_n \leftrightarrow 1/\lambda_n^*$$
$$= C_0 \prod_{n=1}^{N_r/2} (\lambda_n^*)^{-1} \prod_{n=1}^{N_r/2} (1 + \lambda_n \xi^{-1})(1 + \lambda_n^* \xi) \qquad |\lambda| < 1$$

- analogous to Matsubara- frequency summation form [Adams '04]
- Quark number operator is given by

$$\hat{n} = \frac{\partial}{\partial \mu/T} \ln \det \Delta(\mu) = \sum_{|\lambda| < 1} \left(\frac{\lambda \xi^{-1}}{1 + \lambda \xi^{-1}} - \frac{\lambda^* \xi^{-1}}{1 + \lambda^* \xi^{-1}} \right)$$

Nt-dependence of spectrum of Q

- A reduced matrix Q describes the propagation of a quark between initial and final time slices
 - similar to the Polyakov loop

$$Q = A_1 A_2 \cdots A_{N_t}$$

• Eigenvalues of *Q* are expected to scale as [KN, Nakamrua('10)]

$$\lambda = l^{N_t} = e^{-\epsilon/T + i\theta}$$

• It should be confirmed in lattice simulations.

 Lattice results reproduce the scaling behavior

$$\lambda = e^{-\epsilon/T + i\theta}$$

[KN, Motoki, Nakagawa, Nakamura, Saito ('12)]

Lattice setup
 β=1.86(same value of a)
 8^3xNt, mps/mV=0.8,
 RG-improved gauge and
 clover-Wilson fermion with
 Nf=2

Eigenspectrum $|\lambda_n|$ (original vs scaled) $|\lambda_n|, |\lambda_n|^{1/N_t}$ 10⁶ Nt=8 original 10⁴ $|\lambda|$, $|\lambda|^{1/N_t}$ 10²

2

3

n/1000

 $N_{t}=4$ N₊=8

N_t=4 (scaled) N₊=8 (scaled)

5

6

$$\lambda = e^{-\epsilon/T + i\theta}$$

10⁰

10⁻²

10⁻⁴

10⁻⁶

0

Lattice setup β =1.86(same value of *a*) 8^3xNt, mps/mV=0.8, RG-improved gauge and clover-Wilson fermion with Nf=2

Nt=4 original

Nt=4, 8 scaled

Lattice 2013, Mainz, July28-Aug03

Fermi distribution for each configuration

• Quark number operator is given by

$$\hat{n} = \sum_{n=1}^{N_r/2} \left(\frac{\lambda_n \xi^{-1}}{1 + \lambda_n \xi^{-1}} - \frac{\lambda_n^* \xi}{1 + \lambda_n^* \xi} \right) \quad \lambda = e^{-\epsilon/T + i\theta}$$
$$= \sum_{n=1}^{N_r/2} \left(\frac{1}{1 + e^{(\epsilon - \mu)/T - i\theta}} - \frac{1}{1 + e^{(\epsilon + \mu)/T + i\theta}} \right)$$

- This is the Fermi distribution of single quark for each configuration. (winding number of λ is 1).
- Eigenvalues of the reduced matrix are identified as energy levels of single quark for each configuration.

Fermi distribution for each configuration

• Quark number operator is given by

$$\hat{n} = \sum_{n=1}^{N_r/2} \left(\frac{\lambda_n \xi^{-1}}{1 + \lambda_n \xi^{-1}} - \frac{\lambda_n^* \xi}{1 + \lambda_n^* \xi} \right) \quad \lambda = e^{-\epsilon/T + i\theta}$$
$$= \sum_{n=1}^{N_r/2} \left(\frac{1}{1 + e^{(\epsilon - \mu)/T - i\theta}} - \frac{1}{1 + e^{(\epsilon + \mu)/T + i\theta}} \right)$$

- Onset of quark number at T=0
 - $\hat{n} = 0$ for $\mu < \epsilon_{\min}$

 $\neq 0$ for $\mu > \epsilon_{\min}$

Low-lying energy levels ~ eigenvalues near the gap

 $\epsilon_{\min} \sim m_{\pi}/2$

Low-mode Approximation

- To obtain μ=m_N/3, we need further investigations of eigenvalues near the gap (larger V, fluctuations, lower T...)
- However, the eigen-problem of Q becomes ill-conditioned at low-T, and requires large memory for large volume.
- High-lying modes(large and small λ) would be irrelevant of low-energy physics.

Low-mode Approximation

• We consider a low-mode expansion, e.g,

$$\hat{n} = \sum_{n=1}^{M} \left(\frac{\lambda_n \xi^{-1}}{1 + \lambda_n \xi^{-1}} - \frac{\lambda_n^* \xi}{1 + \lambda_n^* \xi} \right) + (n > M + 1)$$

 We test the approximation for the Taylor coefficients of EoS (c₂ and c₄)

$$c_n = \frac{1}{n!} (N_t / N_s)^3 T^n \frac{\partial^n \ln Z}{\partial \mu^n}$$

Lattice 2013, Mainz, July28-Aug03

Results

- Results with M=200, 1000, 2000, and 3072(all)
- Lattice setup

RG-improved gauge and clover-Wilson fermion with Nf=2 Mass & size : mps/mV=0.8 , 8^3x^4 Configs. : 10K trajectories at μ =0 Measurement : 400 configs.

Lattice 2013, Mainz, July28-Aug03

Summary

- Manifest representation of the early onset problem was shown using lattice QCD with the reduction formula.
 - The correspondence between the quark number operator and the Fermi distribution is clarified.
 - The eigenvalues of the reduced matrix are identified as energy levels of single quark for each configuration, which would be useful for applications.
 - We test the low-mode expansion, which is helpful for further studies of the early onset problem.

Buckup Slides

Lattice 2013, Mainz, July28-Aug03

Reduction formula

- Eigenvalues λ of Q
 - pair $\lambda_n \leftrightarrow 1/\lambda_n^*$
 - gap $||\lambda| 1| \neq 0$

Introduction

- Need better understanding spectrum of fermions in QCD
- We discuss the early onset problem using the reduced matrix Q in the reduction formula
 - lattice results of a *Nt-scaling* of eigenvalues of Q ('Lat12)
 - derivation of the Fermi distribution of single quark from fermion determinant
 - identification of eigenvalues of $Q\,$ as energy levels of single quark for each configuration
 - application to the early onset problem and introduction of low-mode approximation

Reduction formula

• A fermion matrix in t-t matrix rep. $\Delta = B - e^{\mu a} V - e^{-\mu a} V^{\dagger}$

[Gibbs ('86). Hasenfratz, Toussaint('92). Adams('03, '04), Borici('04). KN&AN('10), Alexandru &Wenger('10)]

$$\det \Delta = \xi^{-N_{\rm red}/2} C_0 \det(\xi + Q)$$
$$\xi = e^{-\mu/T}$$

✓ Q and C_0 are functions link variables ✓ $N_{\rm red}$ =12 Ns^3

Approximations at low temperatures (T~0.5Tc)

• The average of the quark number density.

It converges at small M~20.

30

Low Temperature Limit

 $|\lambda| > 1$

Reduction formula

• Fermion determinant det Δ – calculating the temporal part of det Δ leads to

$$\det \Delta = \xi^{-N_{\rm red}/2} C_0 \det(\xi + Q)$$
$$\xi = e^{-\mu/T}$$
$$N_{\rm red} = 4N_c N_x N_y N_z$$
$$Q = A_1 A_2 \cdots A_{N_t}$$

– Q and C₀ are independent of μ

- chemical potential and gauge fields are separated

Gibbs ('86). Hasenfratz & Toussaint('92). Adams('03, '04), Borici('04). KN&AN('10), Alexandru & Wenger('10)

Lattice 2013, Mainz, July28-Aug03

Complex potential problem

A free energy or complex potential satisfies electromagnetic analogy (the same as Lee-Yang zero theorem)

$$h(\mu) = \frac{\ln \det \Delta(\mu)}{N_r}, (N_r = 4N_c V_s)$$

= $\frac{\mu}{2} \ln \xi + N_r^{-1} \sum_{n=1}^{N_r} \ln(\xi + \lambda_n) + (\mu - \text{indep.})$

$$(\partial_x^2 + \partial_y^2) \operatorname{Re}[h] = -\pi \delta(\xi) + 2\pi N_r^{-1} \sum_{n=1}^{N_r} \delta(\xi + \lambda_n)$$
$$= -\pi \delta(\xi) + 2\pi \rho(-\xi)$$

complex potential

$$h(\mu) = \frac{\ln \det \Delta(\mu)}{N_r}, (N_r = 4N_c V_s) = \frac{\mu}{2} \ln \xi + N_r^{-1} \sum_{n=1}^{N_r} \ln(\xi + \lambda_n) + (\mu - \text{indep.})$$

- h is analytic function of mu except for det =0,
 - $\begin{array}{ll} \partial_x X = \partial_y Y \\ \partial_y X = -\partial_x Y \end{array} \qquad \mbox{Cauchy-Riemann} \\ \nabla_\xi^2 X = 0 \\ \nabla_\xi^2 Y = 0 \end{array} \qquad \mbox{Laplace} \end{array}$

Complex potential satisfies

$$(\partial_x^2 + \partial_y^2) \operatorname{Re}[h] = -\pi \delta(\xi) + 2\pi N_r^{-1} \sum_{n=1}^{N_r} \delta(\xi + \lambda_n)$$
$$= -\pi \delta(\xi) + 2\pi \rho(-\xi)$$

Gauss's law (2D electrostatic problem) $ec{n} =
abla {
m Re}[h]$

Electrostatic analogy (Lee-Yang('50)) quark number density ~ electric field eigenvalues of reduced matrix ~ (opposite) location of charge

• Volume dependence

Quark mass dependence

mps / mv = 0.6 (red), 0.8 (blue) Histograms : |ev| (Left), arg(ev) (Right) confinement (top), deconfinement(bottom)

4

Chemical Potential Dependence at Low T

- det Δ is insensitive to μ for $\mu a < 0.5$.
- μ -dependence appears at $\mu a = 0.5$.
 - This value is close to $m_{\pi}/2$ in the present setup.

Average phase factor vs μ

Taylor coefficients of EoS

- slow convergence of the Taylor series of EoS

- small S/N ratio of chemical potential dependence

Gap is related to pion mass

$$am_{\pi} = -\frac{1}{Nt} \ln \max_{|\lambda_n| < 1} |\lambda_n|^2$$

Gibbs('86). Eigenvalues and mpi

See also, Fodor, Szabo, Toth ('06). Eigenvalues and hadron spectrum

• At low T, mpi/T is well fitted with a/T, a = 4 Tpc (mq heavy)

• At high T, mpi approaches to a constant Lattice 2013, Mainz, July28-Aug03