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Abelian lattice models             Meisinger & mco arxiv:1306.1495

• Lattice duality solves the sign problem for a broad class of Abelian models, mapping 
complex actions into dual models with real actions.

• For extended regions of parameter space, calculable for each model, duality resolves 
the sign problem for both analytic methods and computer simulations.

• Explicit duality relations are given for models for spin and gauge models based on 
Z(N) and U(1)  symmetry groups.

• The dual forms are generalizations of the chiral Z(N) model and the lattice Frenkel-
Kontorova model, respectively.

• From this equivalence, a rich set of spatially-modulated phases is found in the strong-
coupling region of the original models.



Key results from Generalized PT symmetry

• Eigenvalues real or in conjugate pairs Bender and Boettcher (1998)

• Equivalence to hermitian model when all eigenvalues are real Mostafazadeh (2003)

• Constructibility of a real representation Meisinger and mco (2013)

• PT models have real partition functions Meisinger and mco (2013)
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Lattice-oriented review: 
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Finite density models have CT symmetry:
C : Aµ ! �Aµ T : i ! �i CT : P ! P



Classification of Phases via PT Symmetry

• Region I: PT symmetry is unbroken, and all 
eigenvalues are real. Behavior of correlation 
functions similar to a Hermitian system. 

• Region II: PT symmetry is broken by a one 
or more pairs of excited states becoming 
complex. Thermodynamic properties are 
unaffected, but oscillatory behaviors 
appears in correlation functions.

• Region III: PT symmetry is broken by the 
ground state becoming complex. The 
system is in a spatially modulated phase.

Ej 2 R 8j

Ej 6= E⇤
j j > 0

E0 6= E⇤
0

1 2 3 4 5

1

2

3

4

5

6

7

A

1 2 3 4 5

-1.0

-0.8

-0.6

-0.4

-0.2

0.2
C

5 10 15 20

0.5

1.0

1.5

2.0

2.5

D

Example: d=1 Z(3) spin chain with complex action (Meisinger, mco & Wiser, 2010)



d=2 U(1): derivation
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d=2 U(1): interpretation

• m=1 contributions only gives a lattice 
sine-Gordon model with an extra term: 
lattice form of Frenkel-Kontorova 
model.

• For fixed X2, derivative term counts the 
number of kinks on that slice.

• Continuum form equivalent to a 
massive Thirring model with a chemical 
potential.

• Frenkel-Kontorova model has rich 
modulated phase structure.
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Duality: why it works

H(p, x) = p2 + ix3 H⇤(p, x) = H(p,�x)• PT symmetry is analogous to a 
reality condition on the Fourier 
transform

• Lattice duality for Abelian 
systems uses the Fourier 
transform on the group

• In the dual representation, 
particles are lattice topological 
excitations.

Z(3) model: eJ1z+J2z
2

= a0 + a1z + a2z
2

coefficients all real!

4d: particle worldlines become magnetic 
monopole worldlines under duality; μ couples 
to the monopole current density

Plenary talk by Gattringer; see also many 
papers in the last few years.

In Abelian lattice models: F2 = C



d=2 Z(N)

• Villain form again using 
methods of Elitzur et al. 
(1979)

• Exact duality statements

• Incommensurate phase 
(IC) for J small (Ostlund, 
1981) that extends the 
Coulomb phase for N>4. 
Li is the ordered phase. 
C0  is the dual ordered 
phase. C1 is a high-
density phase. There are 
N  different C phases.
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d=3 Z(N): duality

Villain action for 
gauge and spins.
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Duality swaps between gauge 
and spin degrees of freedom.

G is a background field, but 
corresponds to an electric field 
in Minkowski space. This is 
again a sign problem (Shintani 
et al. 2006; Alexandru 2008).



d=3 Z(N): gauge theory

Duality in d=3 maps Z(N) gauge theory to the chiral Z(N) spin model

The dual model has a rich 
set of commensurate 
modulated phases.
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General result for  Z(N)
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dual potential is real with chiral phases;
N real parameters including phases

Arbitrary PT-symmetric Z(N) potential has N real parameters vj
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Conclusion and Prospects

• Solution of the sign problem for Abelian lattice models: both analytical and 
simulation methods can be applied to a large class of Abelian models

• Rich phase structure for Abelian systems seems typical

• Prospects for non-Abelian systems

• Real representation exists!

• Lack of full non-Abelian duality a problem

• SU(N) deformed to U(1)N-1 can be treated


