Singularities around the QCD critical point in the complex chemical potential plane

Hiroshi Yoneyama Saga Univ., Japan

In collaboration with
Shinji Ejiri (Niigata U.) and Yasuhiko Shinno (Nara NTC.)
1. Introduction

QCD phase diagram

Critical (end) point?

notorious sign problem for $\mu \neq 0$

- Taylor series
- imaginary chemical potential
- reweighing
- strong coupling expansion
- etc

Complex chemical potential plane

- Partition function zeroes: complementary view of critical phenomena
 Lee-Yang (1952)
- scaling in the complex plane
 Itzykson-Pearson-Zuber (1983)
- critical point and singularities in QCD
 Stephanov (2006)
- in connection with experimental data
 Nakamura-Nagata (2013)
In this talk, we have a look at complex effective potential in terms of complex order parameter for complex μ.

By using an effective theory based on a mean field theory, we study

- singularities in the complex μ plane
- extrema of real part of the effective potential
- the Stokes lines
Plan

1. Introduction (√)
2. a QCD effective theory
3. Singularities in the complex μ plane
4. Stokes lines
5. Summary
2. a QCD effective theory: mean field approach

\[N_f = 2 \]

\[\text{tricritical point} \]

\[m = 0 \quad \text{tricritical point: upper critical dimension} \]

\[d = 3 \]

mean field description is expected to be valid (up to log corrections), because the system is effectively in three dimensions at finite \(T \).

\[m \neq 0 \quad \text{critical point = liquid-gas phase transition} \]

\[\sigma \quad \text{massless} \]

\[\pi \quad \text{massive} \]

\[M = \langle \bar{q}_L q_R \rangle = \sigma + i \vec{\tau} \cdot \vec{\pi} \]
a QCD effective theory based on mean field approach

\[\Omega = -m\sigma + \frac{a}{2}\sigma^2 + \frac{b}{4}\sigma^4 + \frac{c}{6}\sigma^6, \]

expands around the tricritical point (TCP) \(a = 0, b = m = 0 \)

\[
\begin{align*}
a(T,\mu) &= C_a (T - T_3) + D_a (\mu - \mu_3) \\
b(T,\mu) &= C_b (T - T_3) + D_b (\mu - \mu_3),
\end{align*}
\]

\(C_b D_a - C_a D_b > 0. \)

Hatta - Ikeda (2003)

\[m = 0 \]
By switching on m, the condition for the critical end point

$$\frac{\partial \Omega(T_E, \mu_E, \sigma_0)}{\partial \sigma} = \frac{\partial^2 \Omega(T_E, \mu_E, \sigma_0)}{\partial \sigma^2} = \frac{\partial^3 \Omega(T_E, \mu_E, \sigma_0)}{\partial \sigma^3} = 0$$

$$\Rightarrow a(T_E, \mu_E) = \frac{9b(T_E, \mu_E)^2}{20c}, \quad -b(T_E, \mu_E) = \frac{5}{54^{1/5}}c^{3/5}m^{2/5}, \quad \sigma_0 = \sqrt{\frac{-3b(T_E, \mu_E)}{10c}}.$$

thermodynamic potential around the critical end point

$$\Omega(T, \mu, \sigma) = \Omega(T_E, \mu_E, \sigma_0) + A_1 \hat{\sigma} + A_2 \hat{\sigma}^2 + A_3 \hat{\sigma}^3 + A_4 \hat{\sigma}^4,$$

$$A_1 = (C_a \sigma_0 + C_b \sigma_0^3) \tilde{t}_E + (D_a \sigma_0 + D_b \sigma_0^3) \tilde{\mu}_E$$

$$A_2 = \frac{1}{2} (C_a + 3C_b \sigma_0^3) \tilde{t}_E + \frac{1}{2} (D_a + 3D_b \sigma_0^3) \tilde{\mu}_E$$

$$A_3 = (C_b \tilde{t}_E + D_b \tilde{\mu}_E) \sigma_0$$

$$A_4 = -\frac{b(T_E, \mu_E)}{2} + \frac{1}{4} (C_b \tilde{t}_E + D_b \tilde{\mu}_E),$$

$$\tilde{t}_E = T - T_E, \quad \tilde{\mu}_E = \mu - \mu_E$$
stability condition

\[A_4 > 0 \quad \Rightarrow \quad \tilde{\mu}_E > \frac{2b(T_E, \mu_E) - C_b\tilde{t}_E}{D_b}. \]

typical behaviors of \(\Omega \) at temperature around the CEP.

first order phase transition for \(\tilde{t}_E < 0 \)
critical point at \(\tilde{t}_E = 0 \)

\(\tilde{t}_E = -0.2 \)

\(\tilde{\mu}_E \equiv \mu - \mu_E = 0.052, 0.054, 0.0555, 0.058, 0.06 \)

\(\tilde{t}_E = 0 \)

\(\tilde{\mu}_E = -0.15, -0.1, -0.05, 0, 0.1 \)
crossover for $\tilde{t}_E > 0$

\[\tilde{t}_E = 0.2 \]

\[\tilde{\mu}_E = -0.08, -0.04, 0.0222 \text{ (crossover)}, -0.005. \]
3. Singularities in the complex \(\mu \) plane

\[
\frac{\partial \Omega}{\partial \sigma} = 0, \quad \frac{\partial^2 \Omega}{\partial \sigma^2} = 0 \quad (*)
\]

\[
A_1 + 2A_2 \sigma + 3A_3 \sigma^2 + 4A_4 \sigma^3 = 0, \quad 2A_2 + 6A_3 \sigma + 12A_4 \sigma^2 = 0.
\]

Example: for \(x_m = 0.2 \) and \(\tilde{t}_E = 0.2 \)

solutions to \((*)\)
\[
\tilde{\mu}_E = -0.3857 \text{ (i)}, \quad -0.0538 \text{ (ii)}, \quad -0.0222 \pm 0.00254 i \text{ (iii)}.
\]

The stability condition of \(\Omega \to \tilde{\mu}_E > -0.3801 \) for \(\tilde{t}_E = 0.2 \)

singularity is located at \(\tilde{\mu}_E = -0.0538 \)

\(\text{Re} \tilde{\mu}_E^* = -0.0222 \pm 0.00254i \)

\[(*)\]

at \(\sigma = -0.07602 \)

\(\tilde{\mu}_E = -0.0222 \)
Susceptibility peak is attained at $\text{Re} \tilde{\mu}^*_E$

$$\tilde{t}_E = 0.1$$

Chiral susceptibility at $\tilde{t}_E = 0.1, 0.2, 0.3$
phase diagram

\[\tilde{t}_E = T - T_E \]

- CEP: \(\tilde{t}_E = 0, \tilde{\mu}_E = 0 \)
- 1st order: \(\tilde{t}_E < 0, \tilde{\mu}_E > 0 \)
- \(\tilde{t}_E > 0, \tilde{\mu}_E < 0 \)

\[\tilde{\mu}_E = \mu - \mu_E \]

\[x_m = m^{1/5} = 0.2 \]
Locations of singularities type (iii) for $\tilde{t}_E > 0$

\[\text{Im } \tilde{\mu}_E = \text{Im } (\mu - \mu_E)\]

\[\text{Re } \tilde{\mu}_E = \text{Re } (\mu - \mu_E)\]

Re $\tilde{\mu}_E = 0$, Im $\tilde{\mu}_E = 0$
3. Stokes lines

reflect the analytic structure around the branch points in the vicinity of the CEP

The Stokes line is understood as the curve to which the Lee-Yang zeros accumulate.

Lee-Yang theorem:
zeros on the imaginary h axis (d-dimensions)

$$\rho = e^{-2h}$$
Stokes lines in the complex $\tilde{\mu}_E$ plane

(I) $\tilde{t}_E > 0$

$\tilde{\mu}_E \equiv \rho e^{i\theta}$

$\Omega(T, \mu, \sigma)$

$\tilde{\mu}_E > 0 \quad (\theta = 0)$

$\tilde{\mu}_E < 0 \quad (\theta = \pi)$
locations of the global minimum of \(\Omega \)

\[\text{Analytical continuation (} \theta \neq 0, \pi \text{)} \quad \tilde{\mu}_E \equiv \rho \, e^{i\theta} \]

vary \(\theta \) 0 to \(\pi \)

consider three cases

(i) \(\rho > \rho^* \)

(ii) \(\rho < \rho^* \)

(iii) \(\rho = \rho^* \)
Summary

By using an effective theory based on a mean field theory, we studied

- singularities in the complex μ plane
- extrema of real part of the effective potential
- the Stokes lines

- the location of the crossover is regarded as a real part of the singularity $\tilde{\mu}_E^*$

- the Stokes lines are located by explicitly looking at $\text{Re } \Omega$ as a function of the complex order parameter σ

- baryon number distribution and complex μ, Morita et. al. (2013)