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The background field method

Expect a mass shift equal to αEE
2 in the presence of a uniform background

field

Determine polarizability by measuring neutron correlators with ~E = 0 and
~E = ±iE0x̂ , then fitting them to determine the mass shift

When fitting correlators, the zero-field and nonzero-field correlators are
correlated

This results in a much smaller error on ∆M than on the mass measurements
themselves
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Reweighting approach

How do we include the effects of the sea quark charges in the background field
approach?

In principle it’s easy: just generate two otherwise identical ensembles, one
with a background field and one without

But this requires unaffordably high statistics, since our two mass
measurements now no longer have correlated errors

Lose all the information in the “cross-correlation” terms of the covariance
matrix

Reweighting is a technique for extracting physics from a different action than
the one used in generation: “retroactively change the ensemble parameters”

We can use it to generate two correlated ensembles, one with and one
without the electric field
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Reweighting

Reweighting is just a modification to the standard quantum Monte Carlo, where only a
part of the factor e−S is absorbed into a Monte Carlo weight:

Standard∫
[dU]Oe−S0∫
[dU]e−S0

→
∑
Oi∑
1

Reweighted
∫

[dU]Oe−SE∫
[dU]e−SE

=
∫

[dU]Oe−(SE−S0)e−S0∫
[dU]e−(SE−S0)e−S0

→
∑
Oiwi∑
wi

where wi = e−(SE−S0)i .

This will only work well if the two ensembles overlap sufficiently.

Otherwise, the weight factor will fluctuate wildly, and the ensemble will be dominated by a
few configs with large weights

W. Freeman (GWU) EM sea effects and reweighting July 29, 2013 4 / 20



Determining the weight factors

In order to do reweighting, need the weight factors
wi = e−∆S = det−1 M−1

η M0

There is a standard stochastic estimator for the inverse determinant
Several improvement techniques, like low-mode separation and determinant
breakup, are very successful in reducing stochastic noise when reweighting in
mq

They don’t work at all when reweighting in the background field

The fluctuations in this standard stochastic estimator are awful (and it is
expensive)

So long as the estimator is unbiased, the result will be too – just with larger
error bars
Useful yardstick: ideally stochastic fluctuations (“noise”) less than gauge
fluctuations (“signal”)
We are so far away from this benchmark that it looks hopeless
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A new pseudo-perturbative approach

The standard improvement techniques (determinant breakup, low mode
separation) used for mass reweighting don’t work

Can’t distinguish the value of the weight factor from 1 with any sane number
of noises on a production lattice

Can we make use of the fact that we only need perturbatively small η?

Perhaps it is easier to estimate ∂wi

∂η

∣∣∣
η=0

and ∂2wi

∂η2

∣∣∣
η=0

than wi itself?

Expand wi in a power series in η up to second order, about η = 0

Linear term in weight factor can combine with linear dependence of GN(t) on
η to give quadratic effect
Quadratic term in weight factor by itself can give quadratic effect

If we can estimate these derivatives instead we can evaluate at any η we
choose to get wi (η)

Sea contributions taken into account in a way that is similar in practice to
the current-insertion approach of Engelhardt
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Derivation of the estimator

For the first derivative, we want ∂
∂η

det Mη

det M0

∣∣∣
η=0

. Rewrite detMη as a Grassman integral:

∂

∂η

detMη

detM0

∣∣∣∣
η=0

=
1

detM0

∂

∂η

∫
dψdψ̄ e−ψ̄Mψ

=
1

detM0

∫
dψdψ̄ − ψ̄ ∂M0

∂η
e−ψ̄M0ψ

= Tr

(
∂M0

∂η
M−1

0

)
.

This trace still must be evaluated stochastically

The second derivative proceeds similarly:

∂2

∂η2

detMη

detM0

∣∣∣∣
η=0

= −Tr∂
2M

∂η2 M−1
0 +

(
Tr
∂M

∂η
M−1

0

)2

− Tr

(
∂M

∂η
M−1

0

)2

Unfortunately, stochastic estimators of the traces here are still too noisy.
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Hopping-parameter expansion improvement

We want to estimate TrO as
〈
ξ†Oξ

〉
, but that estimator is too noisy

We can always add and subtract the same thing, so we can also write:

TrO =

〈
ξ†

(
O −

∑
i

O′i

)
ξ

〉
+
∑
i

TrO′i

Identify other operators O′i with the following properties:

TrO′i can be computed exactly
Stochastic estimators of TrO′i have correlated fluctuations with that of O

Construct such operators by making a hopping parameter expansion of each M−1 that
appears

Computing exact traces is possible, but quite messy

Do as many orders as you can afford (cost goes as O(14n))

Yields substantial improvement

Exact traces computed up to
O(κ7)
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Calculation parameters, first try

243 × 48 lattice, 2 flavors of dynamical nHYP-clover fermions with mπ ' 300MeV ,
300 configs

At least 3000 stochastic estimators of first-order term and 1000 estimators of each
second-order term (and often more) per config

Normally, the effect of reweighting on the statistical power of a calculation can be
determined pretty easily:

Fluctuations of weight factor decrease effective number of configs: Neff = N 〈w〉
2

〈w2〉
But we rely on correlations between zero-field and nonzero-field correlators to
reduce error on ∆E

These correlations are very strong and get stronger for low η: for η = 10−4,
σE = 9 ∗ 10−8, σ∆E = 6 ∗ 10−3

Reweighting only the nonzero-field correlators may spoil these correlations, even if
all the weight factors are O(1)

No way to know how well reweighting will work until the end of the calculation
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Stochastic estimator statistics

Even with all of this effort, the first-order estimates are just barely distinguishable
from random noise:

To see if we can resolve the gauge fluctuations through the noise, do a
zero-parameter fit to Tr ∂M

∂η
M−1 = 0:

This is still dominated by stochastic fluctuations, but the gauge fluctuations
(signal) are evident – barely

What about the second-order term?
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Stochastic estimator statistics

Here the gauge average is not zero, so fit to a constant:

This is indistinguishable from pure noise

Ran extra noise sources on the first hundred configs to see if a signal would appear,
to no effect
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Weight factors

Need to choose a particular η at which to evaluate the expansion to finish the calculation

Valence correlators computed mostly with η = 0.0051

This value of η is too big for a näıve reweighting:

Large constant shift in the action from E causes expansion to break down (∆S > 1)

Still small enough that the effects of E on hadron are perturbative (only quadratic valence
behavior seen)

Solve this by using valence correlators “rescaled” to η = 10−4

Effect on valence correlators is nearly perfectly quadratic, so this is okay

Then, everything is nice and perturbative
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The full reweighting calculation

Combine these with the “rescaled” valence correlators and do the reweighting
order by order

Fitting from t = 9 to t = 21 gives the following for ∆E :

0th order (unreweighted) 6.01(88) * 10−7

1st order 2.86(2.32) * 10−7

2nd order 17.8(10.9) * 10−7

Clearly we need to beat down the stochastic noise further, especially at
second order

Would like a gain of roughly a factor of ten in error!
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Origin of stochastic noise

Variance of stochastic estimator proportional to sum of off-diagonal matrix elements

Can’t study them all, but we can map out a representative set grouped by offset

For most uses of this stochastic estimator (to get, say, TrM−1), the matrix is
diagonally dominant

Not the case here: ∂M
∂η

M−1 has large offdiagonal elements

This is a stark depiction of why this problem is so hard
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Origin of stochastic noise

How does hopping parameter expansion help things?

Improvement operators are ultralocal; only expect reduction near diagonal

Exactly what is expected: improvement up to radius 2

Suppresses large near-diagonal elements which dominate the noise, but doesn’t
eliminate them
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Origin of stochastic noise

To seventh order there is more reduction in offdiagonal elements

Improvement up to radius 7, as expected

Shift in value of diagonal elements comes from traces of improvement operators
which are added back in the full calculation

This is as far as the hopping-parameter expansion can realistically take us

What else can we do?
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Dilution

Dilution separates the matrix dimension into N subsets and stochastically
estimates the trace over each separately

Advantage: eliminates noise contributions from offdiagonal terms from
different subsets
Disadvantage: Requires N operations to cover the lattice; could have reduced
noise by factor of

√
N by simple repetition

Only outperforms simple repetition if the offdiagonal matrix elements “kept”
are lower than the average

We should choose a (four-dimensional generalization) of the rightmost
scheme to eliminate the large near-diagonal elements
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Dilution, for us

Spin-color dilution on its own actually makes things worse

Spatial dilution is somewhat redundant with hopping parameter expansion
improvement

Until you get to very aggressive (N large) dilution schemes, dilution in the presence
of HPE improvement makes things worse

Best dilution schemes are gridding with an additional “8-way hypercubic
checkerboard” pattern overlaid, along with standard spin-color dilution

Nearest neighbor in a grid with spacing x is Manhattan distance 2x away

Using a 44 grid along with spin-color dilution (24,576 subspaces) breaks even with
24,576 HPE-improved undiluted noises

Using a 64 grid (124,416 subspaces!) seems to gain roughly a factor of 2 in error
per inversion for first-order term

One such 64 diluted estimate per config will give us a signal/noise ratio of about 1 on
the first-order terms
Still not sure what the signal strength for the second-order terms is; haven’t been
able to resolve it yet

How many inversions are we willing to dedicate to each configuration?
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Performance improvements and proposed future run

Have already done some things that will improve performance on a
subsequent run

Inversion reuse: save result of M−1ψ and use it for all three operators that
need estimators (factor of 3)
Decreased inverter precision: using 10−5 rather than 10−10 gives a three-fold
speedup (and negligible penalty)

Need to investigate “sloppy CG”: can perhaps wring another factor of 2 or 3
out of it

64 grid + spin-color dilution + 8-way “checkerboard” for the whole ensemble
is 75 million inversions = 300k GPU-hours

This should buy us the factor of ten we need so that the total error in the
polarizability isn’t dominated by the sea contribution
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Conclusions

Stochastic estimates of weight factor expansion terms are very noisy

Much, much worse than many common stochastic estimates (TrM−1)
because of strong nondiagonal dominance

Hopping-parameter expansion helps some, but not enough

Need very strong dilution (N = 124416) to show gains over repeated
undiluted HPE-improved estimator

Combined effect of various optimizations means that such a run is possible,
and should give the needed decrease in error

If we see a significant shift in the polarizability from the sea effect, we can
then attack the ensemble with lighter mπ (for which deflation will pay
dividends) or the ensemble with a larger nx
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