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Analytical Relation between the Polyakov Loop and  

Dirac Eigenvalues in Temporally Odd-Number Lattice QCD 

Abstract:  

Using temporally odd-number lattices, we analytically derive a relation 

between the Polyakov loop < LP > and Dirac eigenvalues ln in QCD.  

For the temporally odd-number lattice with an odd-number Nt,  

the Polyakov loop < LP > is expressed with the Dirac eigenvalues ln : 
 

                  < LP >= const Sn ln 
Nt -1 <n|U4|n>. 

 

From this relation, the contribution of the low-lying Dirac modes to the 

Polyakov loop is found to be negligibly small in this sum. On the other hand, 

the low-lying Dirac modes are essential for chiral symmetry breaking (CSB).  

Then, this relation indicates no direct (one-to-one) correspondence between 

confinement and CSB in QCD, as was shown in our previous studies. 

References:  

[1] S.Gongyo, T.Iritani, H.S., Phys. Rev. D86 (2012) 034510,“Gauge-Invariant Formalism    

     with Dirac-mode Expansion for Confinement and Chiral Symmetry Breaking”.  

[2] T. Iritani, H.S., arXiv:1305.4049[hep-lat], “Polyakov Loop in terms of Dirac  

     Eigenmodes: Relation between Confinement and Chiral Symmetry Breaking”. 



The relation between    

Confinement and CSB is not yet known  

directly from QCD. 

Color Confinement and Chiral Symmetry Breaking (CSB) 

are Two of most important phenomena of   

Nonperturbative QCD 

Introduction : Confinement and Chiral Symmetry Breaking 



Correlation between Confinement and CSB is suggested by 

Simultaneous Phase Transition of  

Deconfinement and Chiral Restoration. 

F. Karsch, Lect. Notes Phys. (2002) 

Chiral Condensate＜qq＞ - Polyakov Loop＜P＞ 

Color Confinement Chiral Symmetry Breaking 

Lattice QCD results at finite temperature 



  Also, similar Coincidence between Deconfinement and Chiral Restoration 

  is found in Finite-Size lattice QCD. 

  In fact, Simultaneous Phase Transitions occur according to the Box Size.  

More on correlation between Confinement and Chiral Sym Breaking 

Deconfinement 

Chiral Restoration 

Confinement 

Chiral Sym.  

  Breaking 

Of course, Finite-Temperature Phase transition is also a kind 

of Finite-Size effect of Euclidean Lattice in temporal direction. 

Small Volume Lattice Large Volume Lattice 

simultaneous  

Phase Transitions  

Confined! 

Freedom! 



  The close relation between Confinement and CSB has been indicated  

  in terms of Monopoles appearing in Maximally Abelian Gauge in QCD.  

  By removing the Monopoles from the QCD vacuum,  

  the confinement property and CSB are simultaneously lost.  
   [e.g. Dual GL theory: H.S. et al, NPB (1995),  

           LQCD : O.Miyamura, PLB (1995), R.Woloshyn, PRD(1995). ]  

O. Miyamura  

More on correlation between Confinement and Chiral Sym Breaking 



Relation between Confinement and Chiral Symmetry Breaking 

The lattice QCD studies indicate an important role of monopoles to  

both Confinement and CSB, and these two nonperturbative phenomena 

seem to be related through the monopole. 

Chiral Symmetry  

Breaking 
Confinement 

We would like to know the relation between 

Confinement and CSB in more direct manner. 

Monopoles  

in MA gauge 

Stack-Neiman-Wensley 

 PRD (1994),…. 
O.Miyamura, PLB (1995),  

R.Woloshyn, PRD(1995), … 

So, we investigate Confinement in terms the Dirac eigenmode of QCD, 

because Low-lying Dirac modes are essential for CSB. 
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Zero-eigenvalue density ρ(0) of QCD Dirac operator  

gives Chiral Condensate. 

⇒ The essential modes for Chiral Sym Breaking are  

     Low-lying Dirac modes. 
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Explicit form of eigen-value equation in lattice QCD  

Eigen-mode of Dirac operator in Lattice QCD 

same as quark field 

apart from an irrelevant  

phase factor 
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We introduce  

Link-variable operator         defined by the matrix element of 
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Using link-variable operator, many notations are quite simplified: 

ninD nl̂ :Dirac eigenvalue, Dirac eigenstate 
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Previous study: Dirac-mode expansion and projection 
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⇒ Projected Link-variable operator  

In this projection, the Dirac-mode sum is done within a subset A.  

e.g.   IR-cut 

Dirac-mode expansion  
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We define Projection operator which restricts the Dirac-mode space.  

 S.Gongyo, T.Iritani, H.S., PRD86 (2012) 034510. 



Previous study: Eigen-value distribution of QCD Dirac operator 

b=5.6 (a=0.25fm),  64  

We Remove the contribution of  

Low-lying Dirac modes.  

(cf. Banks-Casher relation) 
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Chiral Condensate is largely reduced (only 2% remains) 

after removing the low-lying Dirac modes. 

02.0
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for  mq~5 MeV 



Previous study: Wilson Loop after removing low-lying Dirac modes  

Lattice QCD result of  

Wilson Loop and Inter-Quark Potential  

after removing low-lying Dirac modes  

Wilson Loop obeys the Area Law and  

the confining force is almost unchanged 

even after removing the low-lying Dirac modes, 

which are responsible to chiral symmetry breaking.  

Wilson Loop  Potential  

Without 

low-lying Dirac modes  

Without low-lying  

Dirac modes  original 

original 

 S.Gongyo, T.Iritani, H.S., PRD86 (2012) 034510. 



Previous study: Dirac-mode projected Polyakov Loop 

Dirac-mode projected Polyakov Loop 
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Without IR-Dirac modes Polyakov Loop  

Even after removing the low-lying Dirac modes, Polyakov loop remains to be 

zero, which means confinement phase and unbroken Z3-center symmetry.  

on periodic lattice 

 S.Gongyo, T.Iritani, H.S., PRD86 (2012). 

T. Iritani, H.S., arXiv:1305.4049[hep-lat],  



Main Dish ! 



In this study, we use a standard square lattice.  

But we consider temporally odd-number lattice, 

where the temporal length Nt is odd. 

NB: in the continuum limit of a → 0, Nt → ∞,  

any number of large Nt must give the same result. 

Then, it is no problem to use the odd-number lattice. 

t 
Nt =3 case 

O 

O 

For the simple notation,  

we take the lattice unit a=1 hereafter.  

Temporally Odd-Number Lattice 



Temporally Odd-Number Lattice 
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Nt =3 case 

O 

Polyakov loop  

Closed Loops  

All the non-closed loops are gauge-variant  

and their expectation values are zero. 

In general, only gauge-invariant quantities  

such as Closed Loops and the Polyakov loop  

survive in QCD. (Elitzur’s Theorem) 

<   > =0 gauge-variant 



Temporally Odd-Number Lattice 

NB: any closed loop needs even-number 

link-variables on the square lattice. 

t 
Nt =3 case 

O 

Polyakov loop  

Closed Loops  

All the non-closed loops are gauge-variant  

and their expectation values are zero. 

In general, only gauge-invariant quantities  

such as Closed Loops and the Polyakov loop  

survive in QCD. (Elitzur’s Theorem) 



Temporally Odd-Number Lattice 
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Nt =3 case 
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On the temporally odd-number lattice,  

we consider the functional trace: 
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Property on functional trace   
       

NB:                        includes Nt link-variable operators,  
 

since the Dirac operator  
 

includes a link-variable operator in each direction      . 
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In this functional trace                       ,  

it is impossible to form a closed loop on the square lattice,   

because the total number of the link-variable, Nt, is odd.  

Only the exception is the Polyakov loop. 
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Property on functional trace   
       

NB:                        includes Nt link-variable operators,  
 

since the Dirac operator  
 

includes a link-variable operator in each direction      . 
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t 
Nt =3 case 

O 

O 

Any closed loop needs  

even-number link-variables 

on the square lattice. 

In this functional trace                       ,  

it is impossible to form a closed loop on the square lattice,   

because the total number of the link-variable, Nt, is odd.  

Only the exception is the Polyakov loop. 
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since the Dirac operator  
 

includes a link-variable operator in each direction      . 
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Therefore, in this functional trace                       , 

only the Polyakov-loop ingredient can survive: 
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In this functional trace                       ,  

it is impossible to form a closed loop on the square lattice,   

because the total number of the link-variable, Nt, is odd.  

Only the exception is the Polyakov loop. 
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NB:                        includes Nt link-variable operators,  
 

since the Dirac operator  
 

includes a link-variable operator in each direction      . 
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On the other hand,  

using the complete set of the Dirac eigen-states 
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Here, the sum of RHS can be expressed with Dirac eigenvalue    ,  

Dirac eigenfunction           , and temporal link-variable           : 

Each Dirac-mode contribution specified by n can be  

individually calculated in actual lattice QCD simulations. 
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As a remarkable fact, because of  ln
Nt -1, the contribution from  

small ln region is negligibly small  in this sum. 

nUn |ˆ| 4Here, the matrix element                   is generally nonzero. 

(in comparison with other terms with large ln) 

If RHS were not a sum but a product,  

the small ln region should have given a large contribution and  

a critical reduction factor to the Polyakov loop. 

However, in the sum, the small ln contribution is negligible.  

Even in the presence of a possible  

multiplicative renormalization factor for the Polyakov loop, 

the small ln contribution is negligible in this sum,  

relatively in comparison with other non-zero terms.  

Comments: 
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From this relation, the contribution of low-lying Dirac modes  

to the Polyakov loop is negligibly small in this sum, 

while the low-lying Dirac modes are essential for CSB. 
  

Then, this analytical relation indicates no direct (one-to-one) 

correspondence between confinement and CSB in QCD. 

In this study, we have used temporally odd-number lattice.  

However, in the continuum limit of a → 0, Nt → ∞,  

any number of large Nt must give the same result. 

Then, it is no problem to use the odd-number lattice. 

Conclusion 

Comment: 
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Summary and Concluding Remarks 
 

Using the temporally odd-number lattice with an odd-number Nt,  

we have analytically derived a relation between  

the Polyakov loop < LP > and Dirac eigenvalues ln in QCD: 
 

 

 
 

 

From this relation, we have shown that the contribution of  

low-lying Dirac modes to the Polyakov loop is negligibly small.  
On the other hand, the low-lying Dirac modes are essential for CSB.  

Then, this relation indicates no direct (one-to-one) 

correspondence between confinement and CSB in QCD. 
 

In the next talk by T.M.Doi, using actual lattice QCD calculations,  

we confirm this analytical relation in both confined and 

deconfined phases, and also show the negligible contribution of 

low-lying Dirac modes to the Polyakov loop numerically.  
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Thank you! 


