Analytical Relation between the Polyakov Loop and

Dirac Eigenvalues in Temporally Odd-Number Lattice QCD
H. Suganuma, T. M. Doi (Kyoto U.), T. Iritani (KEK)

Abstract:

Using temporally odd-number lattices, we analytically derive a relation
between the Polyakov loop < Lp > and Dirac eigenvalues A, in QCD.
For the temporally odd-number lattice with an odd-number N,

the Polyakov loop < L > is expressed with the Dirac eigenvalues A, :

< Lp>=const Z, A, N7t <n|U,In>.

From this relation, the contribution of the low-lying Dirac modes to the
Polyakov loop is found to be negligibly small in this sum. On the other hand,
the low-lying Dirac modes are essential for chiral symmetry breaking (CSB).
Then, this relation indicates no direct (one-to-one) correspondence between
confinement and CSB in QCD, as was shown in our previous studies.
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Introduction : Confinement and Chiral Symmetry Breaking

Color Confinement and Chiral Symmetry Breaking (CSB)
are Two of most important phenomena of
Nonperturbative QCD

The relation between
Confinement and CSB is not yet known
directly from QCD.




Correlation between Confinement and CSB is suggested by
Simultaneous Phase Transition of
Deconfinement and Chiral Restoration.

Lattice QCD results at finite temperature F. Karsch, Lect. Notes Phys. (2002)
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Fig. 2. Deconfinement and chiral symmetry restoration m 2-favour QCD: Shown
1= (L) (left), which 15 the order parameter for deconfinement m the pure gauge
limit (mg — o), and (i010) (right), which is the order parameter for chiral sym-
metry breaking m the chiral it (m; — 0). Also shown are the corresponding
susceptibilities as a function of the coupling 3 = 6/g°.



More on correlation between Confinement and Chiral Sym Breaking

Also, similar Coincidence between Deconfinement and Chiral Restoration
Is found in Finite-Size lattice QCD.

In fact, Simultaneous Phase Transitions occur according to the Box Size.
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Of course, Finite-Temperature Phase transition is also a kind
of Finite-Size effect of Euclidean Lattice in temporal direction.



More on correlation between Confinement and Chiral Sym Breaking

The close relation between Confinement and CSB has been indicated
In terms of Monopoles appearing in Maximally Abelian Gauge in QCD.

By removing the Monopoles from the QCD vacuum,

the confinement property and CSB are simultaneously lost.
[e.g. Dual GL theory: H.S. et al, NPB (1995),
LQCD : O.Miyamura, PLB (1995), R.Woloshyn, PRD(1995). ]
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Relation between Confinement and Chiral Symmetry Breaking

The lattice QCD studies indicate an important role of monopoles to
both Confinement and CSB, and these two nonperturbative phenomena
seem to be related through the monopole.

Monopoles

in MA gauge

Stack-Neiman-Wensley O.Miyamura, PLB (1995),
PRD (1994),.... \f % R.Woloshyn, PRD(1995), ...

Chiral Symmetry
Breaking

=
|

We would like to know the relation between
Confinement and CSB in more direct manner.

So, we investigate Confinement in terms the Dirac eigenmode of QCD,
because Low-lying Dirac modes are essential for CSB.




Banks-Casher Relation
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Mm—0V -

yol ) :\%<Z5(/1—/1n)> : QCD Dirac operator eigenvalue density
n)=i4,|n)

N

D

Zero-eigenvalue density p(0) of QCD Dirac operator [

gives Chiral Condensate.

= The essential modes for Chiral Sym Breaking are
Low-lying Dirac modes.

¢ The non-zero spectrum is symmetric due to {7/5, ID}: 0

Iﬁl//n = /ftnwn — Iﬁ(7/5l//n) = _ﬂ’n (7/5l//n)



Eigen-mode of Dirac operator in Lattice QCD

A 1 &
D,, = Z_aZlyﬂ[U”(wa’xm -U_,(x)J,,_,]| :Lattice Dirac operator

p= ot .
u_,(x)=U,(x-1)

n> = iﬂ,n‘ n> :Dirac eigen-value, Dirac eigen-state

N

D

A eR

n

2 @wwn (Y) =14y, (X)| :Dirac eigen-function w,(x)
y

Explicit form of eigen-value equation in lattice QCD

Z_ZZyu[uﬂ(x)%(H 2)=U_, (0w, (x— )] =i2,y,(X)

U, (X) >V (U, (VT (x+ )
Gauge trans. property:

v, (X) >V (X)), (X) same as quark field
apart from an irrelevant

(m|n) = Id Xy (v, (X) =8, :normalization ohase factor




We introduce —
Link-variable operator|U

+

Y7

defined by the matrix element of

<X‘Uiﬂ‘ y> — Uiﬂ (X)éxiit,y

U_,(x)=U](x-4)

Using link-variable operator, many notations are quite simplified:

:covariant derivative operator

:Lattice Dirac operator

:Dirac eigenvalue, Dirac eigenstate

4, €R



Previous study: Dirac-mode expansion and projection

S.Gongyo, T.lritani, H.S., PRD86 (2012) 034510.

Y |nXn|=1 :completeness of the Dirac-mode basis

=23 [mjm.

o

../n)Xn|| Dirac-mode expansion

We define Projection operator which restricts the Dirac-mode space.

Projection operator P= Z\ n><n\ P2_p Pp+_p
neA

In this projection, the Dirac-mode sum is done within a subset A.

e.g. IR-cut Z - Z

neA |n|>N|R

= Projected Link-variable operator

05, =P0.,p=FY |m)mJ

meAneA

)|



Previous study: Eigen-value distribution of QCD Dirac operator
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We Remove the contribution of
Low-lying Dirac modes.

_ 2m <(_]q>
(@), = AZA‘, pa <C_]—q'>R ~0.02

for mq~5 MeV

Chiral Condensate is largely reduced (only 2% remains)
after removing the low-lying Dirac modes.

(cf. Banks-Casher relation)
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Previous study: Wilson Loop after removing low-lying Dirac modes
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S.Gongyo, T.lritani, H.S., PRD86 (2012) 034510.

Lattice QCD result of
Wilson Loop and Inter-Quark Potential
after removing low-lying Dirac modes
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Wilson Loop obeys the Area Law and

the confining force is almost unchanged
even after removing the low-lying Dirac modes,
which are responsible to chiral symmetry breaking.




Previous study: Dirac-mode projected Polyakov Loop
S.Gongyo, T.Iritani, H.S., PRD86 (2012).
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FIG. 6: The scatter plot of the Polyakov loop. The left figure
shows the original Polyakov loop (Lp). The right figure shows
the Polyakov loop (Lp)ir after cutting off the low-lying Dirac
modes below the TR-cutoff Air = 0.5a".

Even after removing the low-lying Dirac modes, Polyakov loop remains to be
zero, which means confinement phase and unbroken Z;-center symmetry.







Temporally Odd-Number Lattice

In this study, we use a standard square lattice.
But we consider temporally odd-number lattice,
where the temporal length N, is odd.

o)

¢ [ N, =3 case

O

NB: in the continuum limit of a — 0, N, — oo,
any number of large N, must give the same result.
Then, it is no problem to use the odd-number lattice.

For the simple notation,
we take the lattice unit a=1 hereafter.



Temporally Odd-Number Lattice

In general, only gauge-invariant quantities
such as Closed Loops and the Polyakov loop
survive in QCD. (Elitzur’'s Theorem)

Polyakov loop

" | T N, =3 case

i

O Closed Loops

All the non-closed loops are gauge-variant
and their expectation values are zero.

eg. TrUUU_, =>t{U,(x)U,(x+4U, (x+1)}

gauge-variant  x <‘ |>:O

o <tr{U4(x)U1(x+ AU (x+i)}> =0



Temporally Odd-Number Lattice

In general, only gauge-invariant quantities
such as Closed Loops and the Polyakov loop
survive in QCD. (Elitzur’'s Theorem)

Polyakov loop

¢ | T N, =3 case

i

O Closed Loops

All the non-closed loops are gauge-variant
and their expectation values are zero.

NB: any closed loop needs even-number
link-variables on the square lattice.




Temporally Odd-Number Lattice

O

¢ ] N, =3 case

O

O
On the temporally odd-number lattice,
we consider the functional trace:

| =TrU,D™ " = Z<x [ trU, DM x> - <trlj4|j)Nt—1

” >space—time

Tr=> trtr  tr=trtr,

color & spinor



Property on functional trace 1 =TrJ,D%* = <tr04®Nt_l>

space-time

NB: | :TrU D™ includes N I|nk variable operators,
since the Dirac operator D= Zy”(u -U_)
Includes a link-variable operator In each direction + «..

| =TrU,D™ " includes many trajectories on the square lattice.

| T 1

O O

" ] N, =3 case

Any closed loop needs
even-number link-variables
O on the square lattice.




Property on functional trace 1 =TrJ,D%* = <tr04®Nt_l>

space-time

NB: | =TrU,D™ ™ includes N link-variable operators,
since the Dirac operator D= Z}/”(U -U_)
Includes a link-variable operator In each direction + «..

| =TrJ,D™ tincludes many trajectories on the square lattice.

In this functional trace | =TrU ID -

It is iImpossible to form a Closed loop on the square lattice,
because the total number of the link-variable, N,, is odd.
Only the exception is the Polyakov loop.

@)
O
¢ ] N, =3 case
Any closed loop needs
v even-number link-variables
O

0 on the square lattice.



Property on functional trace 1 =TrJ,D%* = <tr04®Nt_l>

space-time

NB: | _TrU D™ includes N I|nk variable operators,
since the Dirac operator D= Zy”(u -U_)
Includes a link-variable operator In each direction + «..

| =TrU,D™ " includes many trajectories on the square lattice.

In this functional trace | =TrJ,D™*

It is iImpossible to form a closed loop on the square lattice,
because the total number of the link-variable, N,, is odd.
Only the exception is the Polyakov loop.

O
A
¢ ] N, =3 case
Any closed loop needs
even-number link-variables
@

0 on the square lattice.



Property on functional trace 1 =TrJ,D™™" = <tr04®Nt_l>

space-time

NB: | =TrU,D™ ™ includes N link-variable operators,
since the Dirac operator D= Z}/”(U -U_)
Includes a link-variable operator In each direction + «..

| =TrJ,D™ tincludes many trajectories on the square lattice.

In this functional trace |—TFU DN

It is iImpossible to form a Closed loop on the square lattice,
because the total number of the link-variable, N,, is odd.
Only the exception is the Polyakov loop.

Therefore, in this functional trace | ETFU4|23Nt_1,
only the Polyakov-loop ingredient can survive:

| =TrJ,D" " =TrJ,(y, D) =TrU DM

o« TrU, (U, -U_ )" =TrUM =TrL, = <tr L,

>space—time



| =TrU,D"
= -I_rlj4(7/4|j4)l\lt

=TrJ,D;""
1

2N —1
1 A %

_¢1 ("7 only gauge-invariant quantities survive)

(. )/4'\"_1 =1, NB: N-1is even)

Trd,U,-U_)™*

. only gauge-invariant quantities survive)

- N1

4 <trC L,

=R (v trl=4, Tr= ) trtr)

space-time

>space—time

Thus, the quantity | =TrJ,D™™ is proportional to
the Polyakov loop <trc Lp>

space-time



Thus, we obtain

A 4 ~
B N1
| = TrU4D — 2Nt—1 <trc Lp>space—time

On the other hand,
using the complete set of the Dirac eigen-states | n>

| =TrU, DM Z<n|U4I23Nt‘1 | n> = iNt‘lZ/InN“l<n|U4 | n>

T

T
>'|n)n|=1 D[n)=i4,|n)

n

Combining them, we obtain the analytical relation:

o.0) =B s, )
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Here, the sum of RHS can be expressed with Dirac eigenvalue/,
Dirac eigenfunction ¥, (X) , and temporal link-variableU,(x) :

Zn:inN‘1<n U, | n> = Zn:/lnNtlzXn [X)(x U, | x+E)(x+E]n)

X

=3 2" Yl (U, (), (x+6)

Each Dirac-mode contribution specified by n can be
iIndividually calculated in actual lattice QCD simulations.

Each term is manifestly Gauge Invariant.

U, (x) >V (X)U, (X)V " (x+ 2)
W, (X) >V (X)y, (%)
Comment: There Is no cancellation between chiral-pair Dirac states,

\n) and 7/5‘ n> , because N,- 1 is even and (—/In)Nt—l _ ﬂﬁt‘l

Gauge trans. property:



A U LA

As a remarkable fact, because of A Ni™1, the contribution from
small A, region is negligibly small in this sum.

(in comparison with other terms with large A,)

Here, the matrix element <n U, | n> is generally nonzero.

Comments:

If RHS were not a sum but a product,

the small A, region should have given a large contribution and
a critical reduction factor to the Polyakov loop.

However, in the sum, the small A, contribution is negligible.

Even in the presence of a possible

multiplicative renormalization factor for the Polyakov loop,
the small A, contribution is negligible in this sum,
relatively in comparison with other non-zero terms.




I VAR L)

¢ P >space—time 4

Conclusion

From this relation, the contribution of low-lying Dirac modes
to the Polyakov loop is negligibly small in this sum,
while the low-lying Dirac modes are essential for CSB.

Then, this analytical relation indicates no direct (one-to-one)
correspondence between confinement and CSB in QCD.

Comment:

In this study, we have used temporally odd-number lattice.
However, in the continuum limit of a — 0, N, — oo,

any number of large N, must give the same result.

Then, it is no problem to use the odd-number lattice.




Summary and Concluding Remarks

Using the temporally odd-number lattice with an odd-number N,
we have analytically derived a relation between
the Polyakov loop < Ly > and Dirac eigenvalues A, in QCD:

(T S U 3 S GILTATL

From this relation, we have shown that the contribution of

low-lying Dirac modes to the Polyakov loop is negligibly small.
On the other hand, the low-lying Dirac modes are essential for CSB.

Then, this relation indicates no direct (one-to-one)
correspondence between confinement and CSB in QCD.

In the next talk by T.M.Dol, using actual lattice QCD calculations,
we confirm this analytical relation in both confined and
deconfined phases, and also show the negligible contribution of
low-lying Dirac modes to the Polyakov loop numerically.







