Fine structure of the confining string in an analytically solvable 3D model

Davide Vadacchino¹ Michele Caselle¹ Marco Panero² Roberto Pellegrini¹

¹INFN Torino

²University of Helsinki

July 29, 2013

Outline

- 1. Main features of the the U(1) lattice gauge model in 2+1 dimensions.
 - Analytical predictions.
 - Exact dual transformation.
- 2. Effective string theory predictions
 - Squared string width behaviour at finite temperature.

- Interquark potential corrections.
- 3. Numerical Results and Conclusions

The U(1) Lattice gauge theory

The partition function

$$Z = \prod_{\mathbf{x},\mu} \int_{-\pi}^{\pi} \mathrm{d}\vartheta_{\mathbf{x},\mu} \, e^{-\beta \sum_{\mathsf{pl.}} (1 - \cos \vartheta_{\mathbf{x},\mu\nu})}$$

Using discrete forms notation

$$Z = \prod_{c_1} \int_{-\pi}^{\pi} \mathrm{d}(artheta) \, e^{-eta \sum_{c_2} (1 - \cos \mathrm{d} artheta)}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The U(1) Lattice gauge theory

The partition function

$$Z = \prod_{\mathrm{x},\mu} \int_{-\pi}^{\pi} \mathrm{d} artheta_{\mathrm{x},\mu} \, e^{-eta \sum_{\mathsf{pl.}} (1 - \cos artheta_{\mathrm{x},\mu
u})}$$

Using discrete forms notation

$$Z = \prod_{c_1} \int_{-\pi}^{\pi} \mathrm{d}(artheta) \, e^{-eta \sum_{c_2} (1 - \cos \mathrm{d} artheta)}$$

In the weak coupling approximation

$$Z=Z_{
m sw}Z_{
m top}=Z_{
m sw}\sum_{\{q\}}e^{-2\pi^2eta(q,\Delta^{-1}q)}$$

Z_{top} describes a Coulomb gas of magnetic monopoles.
 Dual superconductor: electric charges are confined!

The U(1) Lattice gauge theory Analytical predictions

- Confinement persists for every value of the coupling constant¹
- For $\beta \gg 1$ and $q = \pm 1$

$$\sigma \geq rac{c_\sigma}{\sqrt{2\pi^2eta}}e^{-\pi^2etaoldsymbol{v}(0)}$$
 , $m_D=c_0\sqrt{8\pi^2eta}e^{-\pi^2etaoldsymbol{v}(0)}$

with
$$v(0) = 0.2527$$
.

Since

$$rac{m_D}{\sqrt{\sigma}} = rac{c_0}{\sqrt{c_\sigma}} 2\pi (2\pi\beta)^{3/4} e^{-\pi^2 v(0)\beta/2}$$

we can tune the importance of glueball effects by changing β !

¹(Polyakov, 1976),(Göpfert, 1981)

The U(1) Lattice gauge theory

1 - The duality transformation

Expand each plaquette factor in Fourier series²

$$e^{-eta(1-\cos\mathrm{d}artheta)} = \sum_{k=-\infty}^\infty e^{-eta}\mathrm{I}_{|k|}(eta)e^{\imath k\,\mathrm{d}artheta}$$

- $I_{|k|}(\beta)$ the modified Bessel function of order |k|.
- ▶ Performing the integrals on ϑ in Z yields a constraint for k on each plaquette

$$\delta k = 0$$

The constraint can be automatically solved by the dual 0-chain */ such that

$$k = d^* l$$

The transformation is exact.

²(Savit, 1977)

The U(1) Lattice gauge theory 2 - The dual model

We obtain a globally $\ensuremath{\mathbb{Z}}$ symmetric spin model

$$Z = e^{-\beta N_l} \sum_{\{\star l = -\infty\}}^{\{\infty\}} \prod_{\star c_1} \mathrm{I}_{|\,\mathrm{d}^{\star} l|}(\beta)$$

- Easier and more efficient to simulate than the original model.
- Sources at a distance R easily included in the partition function

$$Z_{R} = e^{-\beta N_{I}} \sum_{\{\star I = -\infty\}}^{\{\infty\}} \prod_{\star c_{1}} \mathrm{I}_{|\mathrm{d}^{\star}I + \star n|}(\beta)$$

1 - Effective string action

$$G(R) = \langle P(x)P^{\dagger}(x+R) \rangle = e^{-S_{\text{eff}}} = e^{-F(R,L)}$$

- At the lowest order (classical) $S_{\text{eff}} = F_{\text{cl}} = \sigma RL + k(L)$.
- Taking into account quantum fluctuations of the string (leading order)

$$S_{\rm eff} = \sigma RL + F_{\rm lo}$$

with

$$F_{\sf lo}(R,L) = (d-2)\log\eta\left(\frac{\imath L}{2R}\right)$$

2 - Effective string action

- ► Up to order (σRL)⁻³ Lorentz invariance constraints the shape of next order terms of the effective string action³.
- At next-to-leading order

$$S_{\rm eff} = F_{\rm cl} + F_{\rm lo} + F_{\rm nlo}$$

with

$$F_{\mathsf{nlo}} = -\frac{\pi^2 L}{1152\sigma R^3} \left(2E_4 \left(\frac{\iota L}{2R} \right) - E_2^2 \left(\frac{\iota L}{2R} \right) \right)$$

After the next to leading order, the boundary⁴ term

$$F_b(R,L) = -b_2 rac{\pi^3 L}{60R^4} E_4\left(rac{\imath L}{2R}
ight)$$

with b_2 fittable parameter.

³(Aharony, 2010) ⁴(Aharony, 2010)

Corrections to the interquark potential

- ► Measure Q(R) = F(R + 1, L) F(R, L) to test effective string corrections to the interquark potential.
- snake algorithm⁵: great increase in precision!

$$Q(R) = -\log rac{G(R+1)}{G(R)} = rac{Z_{R+1}}{Z_R^{L_t-1}} rac{Z_R^{L_t-1}}{Z_R^{L_t-2}} \cdots rac{Z_R^1}{Z_R}$$

where Z_R is the partition function of a system with static charges at a distance R.

► To obtain Q(R) measure L_t local observables in independent simulations.

⁵(deForcrand, 2000), (Panero, 2005)

String width behaviour

$$\omega^2(R,L) = \frac{\sum_R h^2(R) E_l(R)}{\sum_R E_l(R)}$$

At the leading order

$$\omega^{2} = \frac{1}{2\pi\sigma} \log \frac{L}{L_{c}} + \frac{R}{4\sigma L} - \frac{e^{-2\pi\frac{R}{L}}}{\sigma\pi} \sim \frac{R}{4\sigma L}, \text{ for } R \gg L$$

▶ On the lattice, in the presence of two static charges⁶

$$\langle F(x) \rangle_{q\bar{q}} = \frac{\langle \mathrm{d}^* I \rangle}{\sqrt{\beta}}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

⁶(Zach, 1997)

Numerical Results

The general setting

- ► The dual model was simulated on 32^3 and $64^2 \times L_t$ lattices with $L_t = 16, 64$, at $\beta = 1.7$, $\beta = 2.2$ and $\beta = 2.75$.
- Site-by-site Metropolis update algotihm, hierarchical lattice update when useful.

Preliminary results

1 - Wilson loops - 32^3 lattice at $\beta=2.2$

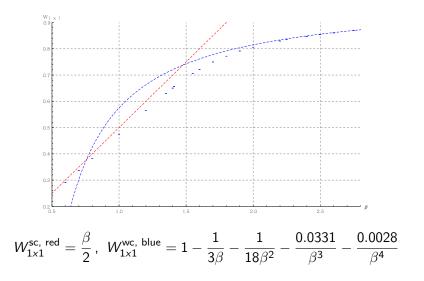
d	$\langle W_{10 imes d} angle \cdot 10^{-3}$	$\langle W_{10 imes d} angle \cdot 10^{-3}$ Irbäck, Peterson
2	56.9(1)	57.2(3)
3	23.6(1)	23.9(2)
4	10.60(4)	10.81(17)
5	4.98(2)	5.07(12)
6	2.35(1)	2.41(9)
7	1.129(6)	1.15(7)
8	0.544(3)	0.54(5)
9	0.263(1)	0.25(4)
10	0.128(1)	0.12(3)

Irbäck, Peterson⁷ simulated the original model: We are simulating the same system!

⁷(Irbäck, 1987)

Preliminary results

2 - The plaquette - 64^3 lattice.



▲□ > ▲圖 > ▲ 臣 > ▲ 臣 > → 臣 = ∽ 9 Q (?)

Analytical predictions

1 - The string tension



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Analytical predictions

2 - The glueball mass

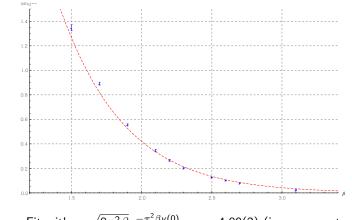


Figure: Fit with $c_g \sqrt{8\pi^2\beta}e^{-\pi^2\beta\nu(0)}$, $c_g = 4.89(2)$ (in agreement with Loan et al. (2001))

Analytical predictions

3 - The ratio $\frac{m(0^{--})}{\sqrt{\sigma}}$

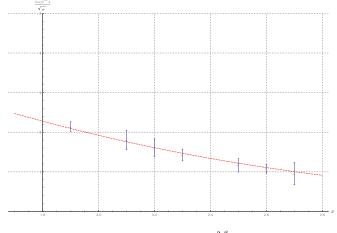


Figure: Fit with $A \cdot 2\pi (2\pi\beta)^{3/4} e^{-\pi^2 \frac{\beta}{2} v(0)}$, A = 0.55(2).

Effective String theory predictions

1 - The string width - 64^2x16 Lattice, $\beta=2.2$

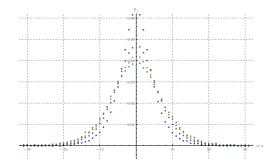


Figure: Measured values of E in the symmetry plane of two sources for various values of intersource distance.

イロト イポト イヨト イヨト

э

Effective String theory predictions

1 - The string width - $64^2 \times 16$ Lattice, $\beta = 2.2$

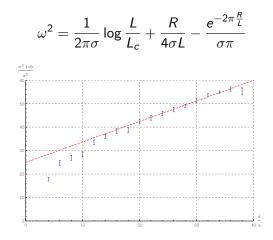
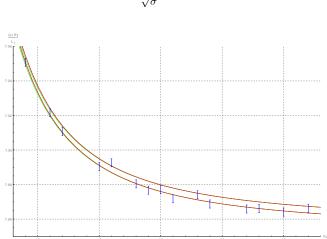


Figure: Measured values of ω^2 fitted with $\omega^2 = a + bd$ for $d \gg 1$. The fit parameters take the values a = 25(2) and b = 0.87(6) in agreement with $\frac{1}{4\sigma L}$.

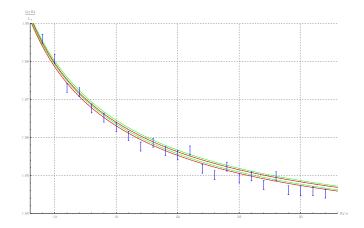
Effective String theory predictions 2 - Q(R) = F(R+1,L) - F(R,L) at L = 64, $\beta = 1.7$



 $rac{m_D}{\sqrt{\sigma}}\sim 2.5$

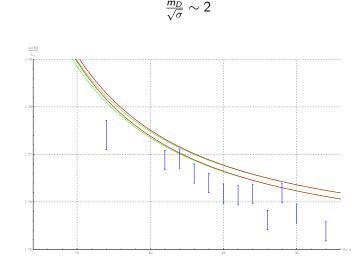
◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへ(?)

Effective String theory predictions 2 - Q(R) = F(R + 1, L) - F(R, L) at L = 16, $\beta = 1.7$



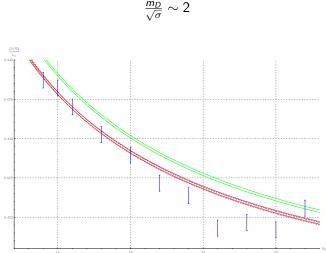
◆□▶ ◆□▶ ◆ □▶ ★ □▶ = 三 の < ⊙

Effective String theory predictions 2 - Q(R) = F(R+1,L) - F(R,L) at L = 64, $\beta = 2.2$



▲□▶ ▲□▶ ★ □▶ ★ □▶ = □ ● ● ●

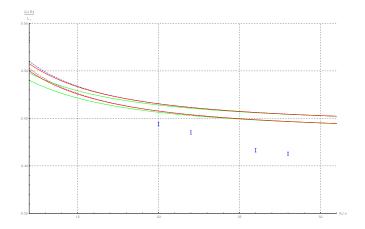
Effective String theory predictions 2 - Q(R) = F(R+1,L) - F(R,L) at L = 16, $\beta = 2.2$



(日) (日) (日) (日) (日) (日) (日) (日)

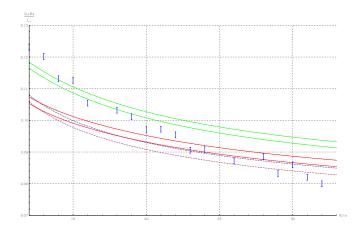
Effective String theory predictions 2 - Q(R) = F(R+1, L) - F(R, L) at L = 64, $\beta = 2.75$

 $rac{m_D}{\sqrt{\sigma}} \sim 1.5$



Effective String theory predictions 2 - Q(R) = F(R+1, L) - F(R, L) at L = 16, $\beta = 2.75$

 $rac{m_D}{\sqrt{\sigma}} \sim 1.5$



◆□▶ ◆□▶ ◆ □▶ ★ □▶ = 三 の < ⊙

Conclusions

- The behaviour of Q(R) predicted in the framework of effective string theory is confirmed by the data, within errors, at the next-to-leading order for β = 1.7.
- The deviations from the predicted behaviour seem to grow with β: they are bigger where glueball effects are expected to be important.
- The predicted behaviour of the flux tube width with intercharge distance is confirmed by the data, within errors, at the leading order.