
Fine structure of the confining string in an
analytically solvable 3D model

Davide Vadacchino 1 Michele Caselle 1 Marco Panero 2

Roberto Pellegrini 1

1INFN Torino

2University of Helsinki

July 29, 2013



Outline

1. Main features of the the U(1) lattice gauge model in 2+1
dimensions.

I Analytical predictions.
I Exact dual transformation.

2. Effective string theory predictions
I Squared string width behaviour at finite temperature.
I Interquark potential corrections.

3. Numerical Results and Conclusions



The U(1) Lattice gauge theory
The partition function

Z =
∏
x ,µ

∫ π

−π
dϑx ,µ e

−β
∑

pl.(1−cosϑx,µν)

Using discrete forms notation

Z =
∏
c1

∫ π

−π
d(ϑ) e

−β
∑

c2
(1−cos dϑ)

In the weak coupling approximation

Z = ZswZtop = Zsw

∑
{q}

e−2π2β(q,∆−1q)

I Ztop describes a Coulomb gas of magnetic monopoles.

I Dual superconductor: electric charges are confined!
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The U(1) Lattice gauge theory
Analytical predictions

I Confinement persists for every value of the coupling constant1

I For β � 1 and q = ±1

σ ≥ cσ√
2π2β

e−π
2βv(0) , mD = c0

√
8π2βe−π

2βv(0)

with v(0) = 0.2527.

I Since
mD√
σ

=
c0√
cσ

2π(2πβ)3/4e−π
2v(0)β/2

we can tune the importance of glueball effects by changing β!

1(Polyakov, 1976),(Göpfert, 1981)



The U(1) Lattice gauge theory
1 - The duality transformation

Expand each plaquette factor in Fourier series2

e−β(1−cosdϑ) =
∞∑

k=−∞
e−βI|k|(β)eık dϑ

I I|k|(β) the modified Bessel function of order |k |.
I Performing the integrals on ϑ in Z yields a constraint for k on

each plaquette
δk = 0

I The constraint can be automatically solved by the dual
0-chain ?l such that

?k = d?l

The transformation is exact.

2(Savit, 1977)



The U(1) Lattice gauge theory
2 - The dual model

We obtain a globally Z symmetric spin model

Z = e−βNl

{∞}∑
{?l=−∞}

∏
?c1

I| d?l |(β)

I Easier and more efficient to simulate than the original model.

I Sources at a distance R easily included in the partition
function

ZR = e−βNl

{∞}∑
{?l=−∞}

∏
?c1

I|d?l+?n|(β)



Effective string theory
1 - Effective string action

G (R) = 〈P(x)P†(x + R)〉 = e−Seff = e−F (R,L)

I At the lowest order (classical) Seff = Fcl = σRL + k(L).

I Taking into account quantum fluctuations of the string
(leading order)

Seff = σRL + Flo

with
Flo(R, L) = (d − 2) log η

(
ıL
2R

)



Effective string theory
2 - Effective string action

I Up to order (σRL)−3 Lorentz invariance constraints the shape
of next order terms of the effective string action3.

I At next-to-leading order

Seff = Fcl + Flo + Fnlo

with

Fnlo = − π2L

1152σR3

(
2E4

(
ıL

2R

)
− E 2

2

(
ıL

2R

))
I After the next to leading order, the boundary4 term

Fb(R, L) = −b2
π3L

60R4
E4

(
ıL

2R

)
with b2 fittable parameter.

3(Aharony, 2010)
4(Aharony, 2010)



Effective string theory
Corrections to the interquark potential

I Measure Q(R) = F (R + 1, L)− F (R, L) to test effective
string corrections to the interquark potential.

I snake algorithm5: great increase in precision!

Q(R) = − log
G (R + 1)

G (R)
=

ZR+1

ZLt−1
R

ZLt−1
R

ZLt−2
R

· · ·
Z 1
R

ZR

where ZR is the partition function of a system with static
charges at a distance R.

I To obtain Q(R) measure Lt local observables in independent
simulations.

5(deForcrand, 2000), (Panero, 2005)



Effective string theory
String width behaviour

ω2(R, L) =

∑
R h2(R)El(R)∑

R El(R)

I At the leading order

ω2 =
1

2πσ
log

L

Lc
+

R

4σL
− e−2π R

L

σπ
∼ R

4σL
, for R � L

I On the lattice, in the presence of two static charges6

〈F (x)〉qq̄ =
〈d?l〉√
β

6(Zach, 1997)



Numerical Results
The general setting

I The dual model was simulated on 323 and 642xLt lattices
with Lt = 16, 64, at β = 1.7, β = 2.2 and β = 2.75.

I Site-by-site Metropolis update algotihm, hierarchical lattice
update when useful.



Preliminary results
1 - Wilson loops - 323 lattice at β = 2.2

d 〈W10×d〉 · 10−3 〈W10×d〉 · 10−3
Irbäck, Peterson

2 56.9(1) 57.2(3)
3 23.6(1) 23.9(2)
4 10.60(4) 10.81(17)
5 4.98(2) 5.07(12)
6 2.35(1) 2.41(9)
7 1.129(6) 1.15(7)
8 0.544(3) 0.54(5)
9 0.263(1) 0.25(4)

10 0.128(1) 0.12(3)

Irbäck, Peterson7 simulated the original model: We are simulating
the same system!

7(Irbäck, 1987)



Preliminary results
2 - The plaquette - 643 lattice.
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Analytical predictions
1 - The string tension
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Figure: Fit with cσ√
2π2β

e−π
2βv(0), cσ = 45.4(1).



Analytical predictions
2 - The glueball mass
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Figure: Fit with cg
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2βv(0), cg = 4.89(2) (in agreement with

Loan et al. (2001))



Analytical predictions
3 - The ratio m(0−−)√

σ
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Figure: Fit with A · 2π(2πβ)3/4e−π
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2 v(0), A = 0.55(2).



Effective String theory predictions
1 - The string width - 642x16 Lattice, β = 2.2
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Figure: Measured values of E in the symmetry plane of two sources for
various values of intersource distance.



Effective String theory predictions
1 - The string width - 642x16 Lattice, β = 2.2
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Figure: Measured values of ω2 fitted with ω2 = a + bd for d � 1. The
fit parameters take the values a = 25(2) and b = 0.87(6) in agreement
with 1

4σL .



Effective String theory predictions
2 - Q(R) = F (R + 1, L) − F (R, L) at L = 64, β = 1.7

mD√
σ
∼ 2.5
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Effective String theory predictions
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Effective String theory predictions
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Effective String theory predictions
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Effective String theory predictions
2 - Q(R) = F (R + 1, L) − F (R, L) at L = 64, β = 2.75
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Effective String theory predictions
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Conclusions

I The behaviour of Q(R) predicted in the framework of
effective string theory is confirmed by the data, within errors,
at the next-to-leading order for β = 1.7.

I The deviations from the predicted behaviour seem to grow
with β: they are bigger where glueball effects are expected to
be important.

I The predicted behaviour of the flux tube width with
intercharge distance is confirmed by the data, within errors, at
the leading order.
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