Progress in Gauge-Higgs Unification on the Lattice (II)

Francesco Knechtli with Peter Dziennik, Nikos Irges and Kyoko Yoneyama

Bergische Universität Wuppertal

July 29, 2013

Lattice 2013, Mainz

Definition: action

Orbifold action

Anisotropic Wilson plaquette action for gauge group SU(2) on a $T\times L^3\times (N_5+1)$ lattice

$$\begin{split} S_W^{\text{orb.}} &= \frac{\beta}{2} \sum_n \left[\frac{1}{\gamma} \sum_{\mu < \nu} w \operatorname{tr} \left\{ 1 - P_{\mu,\nu}(n) \right\} + \gamma \sum_\mu \operatorname{tr} \left\{ 1 - P_{\mu,5}(n) \right\} \\ w &= \begin{cases} \frac{1}{2} \quad \text{boundary plaquette} \\ 1 \quad \text{in all other cases.} \end{cases}, \quad \pi R = N_5 a_5 , \\ \beta_4 = \beta / \gamma , \quad \beta_5 = \beta \gamma , \quad \gamma = a_4 / a_5 \text{ (classical level)} \end{split}$$

Orbifold space: extra dimension is an interval $n_5 \in [0, N_5]$ with Dirichlet boundary conditions

$$U_{\mu}(n) = g U_{\mu}(n) g^{-1} \Rightarrow U_{\mu}(n) = e^{i\phi(n)\sigma^3} \in U(1)$$

at $n_5=0$ and $n_5=N_5$ with $g=-i\sigma^3$ [Irges and FK, 2005]

Definition: fields

Definition: Higgs operators

Polyakov line P on S^1/\mathbb{Z}_2

Orbifolded Polyakov loop

 $P = lql^{\dagger}q^{-1}$

where
$$g = -i\sigma^3$$

Lattice Higgs operators:

- tr $\{P\}$: S_L , S_R , $U(1)_L$, $U(1)_R$, F
- tr { $\Phi\Phi^{\dagger}$ } : S_L , S_R , $U(1)_L$, $U(1)_R$, F with $\Phi = 1/(4N_5) [P - P^{\dagger}, q] = \phi^1 \sigma^1 + \phi^2 \sigma^2$

Definition: Gauge-boson operators

	Phase diagram		
Isotropic			

$\gamma=1$, $12^4\times5$

Observables: 4d plaquette at $n_5 = 2$, $|\text{tr} \{P\}|$ and $(\text{tr} \{Z_k\})^2$ red: hot start, blue: cold start (4000 measurements) Bulk SU(2) phase transition around $\beta = 1.65$ (like with periodic boundary conditions)

	Phase diagram	
Anisotropic		

$12^4 \times 5$

The bulk hysteresis has an end-point at $\gamma < 1$ (cf. mean-field calculation, talk by K. Yoneyama)

	Phase diagram	
Anisotropic		

Nature of the end-point transition

The maximum of the plaquette susceptibility is approximately constant at the end-point transition on $12^4 \times 5$ and $16^4 \times 5$ (its location changes with L) \Rightarrow cross-over

Higgs and Z-boson masses

Isotropic

Lattices $64 \times 32^3 \times 5$ at $\gamma = 1$ $m_Z \neq 0$ does not decrease with L (Higgs mechanism!) and $m_Z \gtrsim m_H$ We see excited states for the Higgs and the Z-boson

F. Knechtli, Gauge-Higgs Unification (II)

Conclusions and outlook

Conclusions

- ► Non-perturbative Gauge-Higgs Unification on orbifold in pure SU(2) gauge theory
- ▶ Isotropic : 1st order phase transition, $m_Z \neq 0$ but $\rho_{HZ} = m_H/m_Z \lesssim 1$
- \blacktriangleright Anisotropic, $\gamma < 1$: end-point of the 1st order transition is most likely a cross-over

Outlook

- ▶ Behavior of the masses as the cross-over at $\gamma < 1$ is approached \longrightarrow effective theory?
- Dimensional reduction and its effects on the static potential

