# The phase structure of a chirally-invariant Higgs-Yukawa model

Lattice conference 2013

#### Bastian Knippschild (HISKP Bonn)

In collaboration with:

Prasad Hedge, George W.-S. Hou, Karl Jansen, C.-J. David Lin, Kei-Ichi Nagai, Attila Nagy and Kenji Ogawa

previous proceedings: arXiv:1210.8249, arXiv:1111.4544 review article: Adv. High Energy Phys. 2013 (2013) 875612

B. Knippschild (HISKP) Phase structure of a Higgs-Yukawa model

## Motivation

- With discovery of light Higgs boson  $m_H pprox 125~{
  m GeV}$  at CERN
  - $\rightarrow$  Standard Model completed

• Still questions open: dark matter, CP-violation, ...

- New physics if renormalized Yukawa coupling is large?
- Bare infinite Yukawa coupling corresponds to the O(4) model

[ATLAS/CMS 2012]

- Investigation of phase transitions of a chirally-invariant Higgs-Yukawa model (non-perturbative in its nature):
  - Order?
  - Universality class?
  - Bound states of fermions?

<sup>[</sup>Hasenfratz et al.1991]

# The O(4)-model

• Lattice action with real four-vector  $\Phi$ :

$$S_B[\Phi] = -\kappa \sum_{x,\mu} \Phi_x^{\dagger} \left[ \Phi_{x+\mu} + \Phi_{x-\mu} \right] + \sum_x \Phi_x^{\dagger} \Phi_x + \hat{\lambda} \sum_x \left[ \Phi_x^{\dagger} \Phi_x - 1 \right]^2$$

• Connection to continuum formulation:

$$\varphi = \sqrt{2\kappa} \left( \begin{array}{c} \Phi^2 + i\Phi^1 \\ \Phi^0 - i\Phi^3 \end{array} \right), \quad \lambda_0 = \frac{\hat{\lambda}}{4\kappa^2}, \quad m_0^2 = \frac{1 - 2\hat{\lambda} - 8\kappa}{\kappa}$$

- Simulations at upper Higgs boson mass bound  $(\hat{\lambda} \to \infty)$
- $\bullet\,$  Scan of phase transition in hopping parameter  $\kappa\,$

Phase structure of a Higgs-Yukawa model

# Magnetization $m_L$ of pure O(4)-model



B. Knippschild (HISKP)

Phase structure of a Higgs-Yukawa model

## Investigation of phase structure with finite size scaling

- Use finite volume to compute critical exponents in infinite volume
- Critical exponents define universality class
- Investigation of susceptibility:  $\chi_L = V \left[ \langle m_L^2 \rangle \langle m_L \rangle^2 \right]$

• Scales like:  

$$\chi_L \left( |T - T_c^L| \gg 1 \right) \sim |T - T_c^L|^{-\gamma}$$

$$\chi_L \left( |T - T_c^L| \to 0 \right) \sim L^{1/\nu}$$

$$T_c^L - T_c^\infty \sim L^{-1/\nu}$$

with critical exponents  $\nu=1/2$  and  $\gamma=1$ 

- Focus on extraction of  $\nu$
- T represents either  $\kappa$  in O(4)-model or y in Higgs-Yukawa model

 $\bullet~\log\text{-corrections}$  in case of triviality:  $L^{1/\nu} \to L^2 \, (\log L)^{1/2}$ 

# Modelling of global fit function

• Modelling of global fit function to susceptibility: [Jansen, Seuferling 1990]

$$\chi_L(T;\xi) = A_1 \left( \left[ L^2 (\log L)^{\xi} \right]^{-1/\nu} + A_{2,3} \cdot \tau^2 \right)^{-\gamma/2} \tau = \left( T - T_c^L \right) = \left[ T - \left( T_c^{\infty} + C \cdot \left[ L^{-1} \cdot (\log L)^{-\xi/2} \right]^b \right) \right]$$

• 8 free fit parameters:  $A_1, A_2, A_3, C, \nu, b = 1/
u, \gamma, T_c^\infty$ 

- log-exponent  $\xi$  must be 1/2 but can be changed
- Direct determination of critical exponents u and  $\gamma$

Slide 5

# Susceptibility $\chi_L$ of pure O(4)-model

- Peak hight shows expected dependence on *L*
- Peak shift too small to see within given statistics



### Individual volume fits

• Modelling of fit function for individual volumes:

[Jansen et al.1986]

$$\chi_L(T) = a + c \cdot T + \frac{d}{1 + e \cdot |T - T_c^L|^g}$$

• 6 free fit parameters:  $a, c, d, e, g, T_c^L$ 

• Extraction of  $T_c^L$  and  $\chi_L^{\max}$ 



## Naive fits to susceptibility

•  $\chi_L^{\text{max}}$  computed from quadratic fit to  $\chi_L$  close to maximum:

$$\chi_L(T) = m + p \cdot T + q \cdot T^2$$

- Three free fit parameters  $\boldsymbol{m},\boldsymbol{p},\boldsymbol{q}$
- Fits only very close to maximum
- Extraction of  $\chi_L^{\max}$



# Fits to $\chi_L^{\rm max}$

• Fit function from finite size scaling:

$$f_{\max}(L;\xi) = \left[A_1 \cdot (L[\log L]^{\xi})^{1/\nu}\right]$$

- ${\, \bullet \, }$  2 free fit parameters:  $A_1, \nu {\rm ,}$  parameter  $\xi$  must be 1/2
- All methods agree within errors



# Results of the O(4)-model study

- Comparison of  $1/\nu$  for different  $\log$  exponents  $\xi$  with its prediction of  $1/\nu = 2$
- Systematics taken into account: variation of fit interval, volumes, and fit method
- Analysis in full agreement with expectation



## Fermions on the lattice

• Fermion action:

$$S_{\Psi} = \sum_{x,x'} \bar{\Psi}_x \left[ \mathcal{D}_{\rm ov} + y P_+ \Phi^{\alpha} \theta^{\dagger}_{\alpha} \ \hat{P}_+ + y P_- \Phi^{\alpha} \theta_{\alpha} \hat{P}_- \right]_{x,x'} \Psi_{x'}$$

with  $\theta_{1,2,3} = -i\tau_{1,2,3}$  and  $\theta_4 = 1_{2\times 2}$ and the chiral projectors  $P_{\pm}$  and  $\hat{P}_{\pm}$ 

- Overlap operator D<sub>ov</sub> usually numerically very expensive but here no gauge fields [Kaplan 1992; Neuberger, Lüscher, Hasenfratz 1998]
- Chirally-invariant lattice formulation
- Heavy mass degenerate quark doublet
- In the following: hopping parameter  $\kappa=0.06\,(0.00,0.10)$  and quartic coupling  $\hat{\lambda}\to\infty$  fixed and scan through Yukawa coupling y

## Magnetization at small and large Yukawa couplings y

- Symmetric and broken phases easily distinguishable
- $\, \bullet \,$  No jumps in magnetisation  $\, \rightarrow \,$  phase transitions are of second order



Phase structure of a Higgs-Yukawa model

## Susceptibility at at small and large Yukawa couplings $\boldsymbol{y}$

- Peak shifts stronger at large y
- Global fits perform well
- At small y: more statistics and more points for L=14 and 16 needed
- At large *y*: more points for L=6, 10, and 14 far away from phase transition needed



## Comparison of Higgs-Yukawa model with O(4)-model

- u agrees at small and large  $y \rightarrow$  same universality class
- log exponent seems to be -1/2 if theory is trivial  $\rightarrow$  different from O(4)-model
- Need of analytic computation of log exponent!



## Spectrum observables

- Scale setting:  $a = \frac{v_r}{246 \text{ GeV}}, \quad v_r = \frac{v}{\sqrt{Z_G}}, \quad v = \sqrt{2\kappa} \langle m_L \rangle$
- Higgs-/Goldstone boson masses from propagators:

$$0 = \Re \left( \left. \left[ G_{\scriptscriptstyle G/H}(p^2) \right]^{-1} \right) \right|_{p^2 = -m_{\scriptscriptstyle G/H}^2}$$

- Propagators are fitted according to a perturbative one-loop motivated expression
- Field renormalization constants:

$$Z_{_{G/H}}^{-1} = \frac{d}{d(p^2)} \Re \left( \left[ G_{_{G/H}}(p^2) \right]^{-1} \right) \bigg|_{p^2 = -m_{_{G/H}}^2}$$

• Fermion masses can be extracted from temporal correlation functions

## Higgs boson mass in dependence of cut-off (L=12)

- Very preliminary analysis one volume, no systematic effects
- Higgs-boson mass dependence of cutoff similar for both regions



B. Knippschild (HISKP)

# Fermion correlation functions (L=12)

- At small y close to phase transition expected sinh behaviour
- $\bullet\,$  Deep in broken phase fermions become heavier than cutoff  $\rightarrow\,$  doublers
- Happens also for L=16 and 24
- Further investigation necessary



# Summary and outlook

Summary:

- $\log$  corrections might differ in Higgs-Yukawa model from O(4)-model
- $\bullet\,$  Strong evidence that both phase transitions at  $y \neq 0$  are in same universality class
- First spectrum calculations started

# Summary and outlook

#### Summary:

- log corrections might differ in Higgs-Yukawa model from O(4)-model
- $\bullet\,$  Strong evidence that both phase transitions at  $y \neq 0$  are in same universality class
- First spectrum calculations started

#### Outlook:

- ullet More statistics and data points are needed at small and large y
- ullet Analytic calculation of  $\log$  corrections in Higgs-Yukawa model
- Intensify spectrum calculations

# Thank you!

Slide 19

# Backup

Slide 20

# Fits to $\kappa_c^L$ in O(4)-model

• Fit function from finite size scaling:

$$f_{\mathsf{pos}}(L;\xi) = \left[C \cdot (L^{-1}[\log L]^{-\xi})^{1/\nu} + \kappa_c^{\infty}\right]$$

 ${\, \bullet \, }$  3 free fit parameters:  $C,\nu,\kappa_c^\infty,$  parameter  $\xi$  must be 1/2

- Global fit procedure cannot resolve shift
- ullet Errors are big and shift is very small ightarrow no reasonable fit possible



# Critical exponent $\nu$ from peak shift at large y

- No systematic effects for volume method (only 4 volumes)
- Only global fit to small y without systematic study
- $\nu$  agrees at small and large y
- No information about  $\log$  exponent



#### Rescaled susceptibility



Summary and outlook

#### Susceptibility at $\kappa = 0.00$ and $\kappa = 0.10$

