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● Strong interactions are non-perturbative
● Like QCD
● But not always: Asymptotic freedom

● Weak interactions can be non-perturbative
● QED is weakly interacting, but has non-

perturbative features like atoms, molecules, 
matter with phase structure,...

● Are there (relevant) non-perturbative effects 
in the weak interactions and the Higgs?

● Bound states?
● Simplify: Just Higgs and W/Z

What is non-perturbative?
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The Higgs sector as a gauge theory

● The Higgs sector is a gauge theory

● Ws
● Higgs
● No QED: Ws and Zs are degenerate

● Couplings g, v, λ and some numbers f abc and t
a
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Symmetries

● Local SU(2) gauge symmetry
● Invariant under arbitrary gauge transformations
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● Local SU(2) gauge symmetry
● Invariant under arbitrary gauge transformations

● Global SU(2) Higgs flavor symmetry
● Acts as right-transformation on the Higgs field only
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● Non-perturbative: Simulate Higgs+W [Maas'12]

● Physical W/Higgs mass ratio
● Good comparison to perturbation theory
● Error at least of order W-Z mass splitting

● Close to the transition to QCD-like behavior
● Different (bare) parameters: Talk of Mark Wurtz

● Also good agreement to standard model

Parameters
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● Renormalization scheme with
 
● Massive-like propagator
● Dynamical mass generation

W boson [Maas'11,'12]
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W boson

Fit type Mass Remark

Unstable 71.8(1) GeV Width: 2.1(4) GeV

Configuration space 79(4) GeV

Faster-than-massive decay
Avoids unitarity violation

[Maas'11,'12]



Higgs boson

● Renormalization scheme with D(μ)=Dtl(μ)

D(μ) '=Dtl(μ) '
Dtl( p)=1 /(p2+(123GeV )

2
)

μ=123GeV

[Maas'11,'12]



● Normal propagator – normal mass

Higgs boson [Maas'11,'12]
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Fit type Pole mass Remark
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Higgs boson [Maas'11,'12]



Scheme dependent!

● Different renormalization scheme with mass 90 GeV

Fit type Pole mass Remark
Unstable 86(1) GeV Width 1(1) GeV

Configuration space 87(1) GeV

[Maas'11,'12]
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Physical states

● Elementary particles depend on scheme, 
gauge, scale...not satisfactory for a physical 
observable

● Only bound states and cross sections gauge-
invariant, scheme-invariant, and scale-
invariant

● Bound states: Higgs-Higgs, 2-Higgs-W, W-W etc.

● Lattice literature: Higgs, W, Gaugeball

Wh W WWWWh
h

h

[Fröhlich et al.'80,
 't Hooft'80,
 Bank et al.'79]
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h h

● Simpelst 0++ bound state
● Same quantum numbers as the Higgs

● No weak or flavor charge
● Mass is about 123 GeV

h +
(x)h(x)

Higgsonium [Maas'12,Maas et al.'12]
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● Higgsonium: 123 GeV, Higgs at tree-level: 123 GeV
● Scheme exists to shift Higgs mass always to 123 GeV

● Coincidence? No.
● Duality between elementary states and bound states 

[Fröhlich et al.'80]

● Same poles to leading order
● Deeply-bound relativistic state

● Mass defect~constituent mass
● Cannot describe with quantum mechanics
● Very different from QCD bound states

〈(h + h)(x)(h + h)( y)〉
h=v+η

≈ const.+〈h +
(x)h( y )〉+O(η

3
)

Mass relation - Higgs
[Fröhlich et al.'80
 Maas'12]
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● Mass about 80 GeV
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Mass relation - W

● Vector state: 80 GeV
● W at tree-level: 80 GeV

● W not scale or scheme dependent
● Same mechanism

● Same poles at leading order
● Remains true beyond leading order
● At least for a light Higgs

〈(h + Dμh)(x)(h
+ Dμh)( y)〉

h=v+η
≈

∂ v=0
const.+〈W μ(x)W μ ( y)〉+O(η

3
)

[Fröhlich et al.'80
 Maas'12]
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● Bound state and elementary particles are 
equivalent to leading order

● At tree-level same resonances in cross section

● Beyond tree-level: Resonances in cross 
sections remain physical

● Small effect (~1%) at Higgs/W/Z poles
● Observable consequences?

Consequences I – W and Higgs
[Fröhlich et al.'80
 Maas'12]
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Experimental accessibility

● E.g. excited Higgsonium: Decay channel: 2W
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● Higgs sector with light Higgs successfully described 
by perturbation theory around classical physics

● Bound-state/elementary state duality
● Highly relativistic bound states

● Unusual structure
● Physical interpretation of resonances in cross 

sections
● New excitations of bound states?

● Could be background for new physics searches
● Possibly accessible at LHC/ILC

● Non-perturbatively interesting even for a light Higgs
● Interesting, alternative parameters: Talk by Wurtz


