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What is non-perturbative?

* Strong interactions are non-perturbative
* Like QCD
* But not always: Asymptotic freedom
* Weak interactions can be non-perturbative

* QED is weakly interacting, but has non-
perturbative features like atoms, molecules,
matter with phase structure,...

* Are there (relevant) non-perturbative effects
in the weak interactions and the Higgs?

* Bound states?
* Simplify: Just Higgs and W/Z
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The Higgs sector as a gauge theory

* The Higgs sector is a gauge theory
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Symmetries

L= Wi WD) Db+ h(hh," =)

a a a a b c
Wi =0, W =0, Wi+ gf . W W,
D;=08"0,—igW .t.

* Local SU(2) gauge symmetry
» Invariant under arbitrary gauge transformations ¢°(x)
W W (80, —gfeW)o" h—h+gt o' h,
* Global SU(2) Higgs flavor symmetry

* Acts as right-transformation on the Higgs field only
Wi-sWe h—h+a"h+b"h/
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Parameters

L:_i W WZV+(DZhj) "Dy h (A, =)

a a a a b c
W..,=0, F.VV—“@V Wu+gfb;_ w.Ww,
D;=08"0,—igW .t.
* Non-perturbative: Simulate Higgs+W
* Physical W/Higgs mass ratio

* Good comparison to perturbation theory
* Error at least of order W-Z mass splitting
* Close to the transition to QCD-like behavior

» Different (bare) parameters: Talk of Mark Wurtz
 Also good agreement to standard model
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W boson

W propagator
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Higgs boson

« Renormalization scheme with D(u)=D"(u)
D(u)'=D"(u)’
D"(p)=1/(p°+(123GeV ))
u=123GeV



Higgs boson

Schwinger function

Higgs propagator
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Higgs boson

Schwinger function
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Higgs boson

Schwinger function Higgs propagator
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Scheme dependent!

Schwinger function Higgs propagator
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Physical states

* Elementary particles depend on scheme,
gauge, scale...not satisfactory for a physical
observable

* Only bound states and cross sections gauge-
invariant, scheme-invariant, and scale-
INvariant

* Bound states: Higgs-Higgs, 2-Higgs-W, W-W etc.

« Lattice literature: Higgs, W, Gaugeball
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Mass relation - Higgs

* Higgsonium: 123 GeV, Higgs at tree-level: 123 GeV
* Scheme exists to shift Higgs mass always to 123 GeV
* Coincidence? No.

* Duality between elementary states and bound states
X . h=v+n ) 3
((h" h)(x)(h" h)(y)) ~ const.+(h™ (x)h(y))+O(n)

« Same poles to leading order

* Deeply-bound relativistic state

* Mass defect~constituent mass
* Cannot describe with quantum mechanics
* Very different from QCD bound states
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h' h

* Vector state with operator ¢ D,
P ' Vh " h h' h
* Only in a Higgs phase close to a simple particle

* Higgs-flavor triplet



Isovector-vector state
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* Only in a Higgs phase close to a simple particle
* Higgs-flavor triplet
* Mass about 80 GeV
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Mass relation - W

 \Vector state: 80 GeV
e W at tree-level: 80 GeV

* W not scale or scheme dependent
* Same mechanism

((h™ D,h)(x)(h™ D,h)(y))
h=v+n
~ const.+(W (x)W (y))+0O(n)

ov=0
 Same poles at leading order
* Remains true beyond leading order
At least for a light Higgs
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Consequences I — W and Higgs

* Bound state and elementary particles are
equivalent to leading order

* At tree-level same resonances in cross section
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* Beyond tree-level: Resonances in cross
sections remain physical

 Small effect (~1%) at Higgs/W/Z poles
* Observable consequences?
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* Can exist for other quantum numbers
* No simple relation to elementary states
* Can mimic new physics

* Production cross-section small
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e Luscher's method

e Shows a resonance structure
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Channel 0" -> 2 1" decay channel
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* Scattering phases can be calculated
e Luscher's method
e Shows a resonance structure
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* E.g. excited Higgsonium: Decay channel: 2W

e Could contribute to final states with W and Z

* Higher order processes
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* E.g. excited Higgsonium: Decay channel: 2W
 Could contribute to final states with W and Z

* Higher order processes
* Strongly suppressed ~1%
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Summary

* Higgs sector with light Higgs successfully described
by perturbation theory around classical physics

* Bound-state/elementary state duality

* Highly relativistic bound states

e Unusual structure

* Physical interpretation of resonances in cross
sections

* New excitations of bound states?

* Could be background for new physics searches
* Possibly accessible at LHC/ILC

* Non-perturbatively interesting even for a light Higgs
* Interesting, alternative parameters: Talk by Wurtz



