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Introduction

Higgs boson and vacuum stability

» The discovery of the/a Higgs boson with a mass of ~ 126 GeV may
have impact on the stability of the electroweak vacuum

» Theoretical predictions suggest a lower bound for the stability of the
vacuum in the range of around 129 GeV [Degrassi et.al. 2012]

[Plenary talk by J. R. Espinosal

» Results from evolutions of all couplings up to the Planck scale

» The meta stability occurs due to the quartic self coupling of the
scalar field turning negative below the Planck scale

» Assumes nothing but Standard Model (SM)
> Any new physics might change this picture
» However, other results suggest stability even in the SM  egericnner 2013
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Introduction

Stabilizing the vacuum

» Higgs sector is a cutoff theory (triviality) — Ag(¢7¢)? term in the
action is allowed

with A\g > 0, the Higgs potential is stable even with negative A
Could emerge as a low energy effect of some higher scale physics
Very easy extension of the SM

vV v vvY

We want to investigate the possibility to alter the Higgs boson mass
bound in a Higgs-Yukawa model
» As a first step we want to map out the phase structure with a
A6 (¢T¢)3 term included
> Non-perturbatively via lattice simulations and perturbatively by the
constrained effective potential (CEP)
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Introduction

Higgs-Yukawa model
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Introduction

Higgs-Yukawa model
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Lower mass bound

Constrained effective potential in the broken phase

[0’Raifeartaigh, et al. 2007; Gerhold et.al. 2009]

» In the broken phase, the CEP only depends on the zero mode 7,
determining the vev

» The scalar doublet can be decomposed in the Higgs and Goldstone
modes
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Lower mass bound

Constrained effective potential in the broken phase

[0’Raifeartaigh, et al. 2007; Gerhold et.al. 2009]

» In the broken phase, the CEP only depends on the zero mode 7,
determining the vev

» The scalar doublet can be decomposed in the Higgs and Goldstone
modes

1
U () = gmit? + X' + Aot + Up(9) + 6A5* (P + Pg)
+ X0 (15Pg + 9Pg) + \60*(45P% + 54 Py Pg + 45P2)

With the propagator sums Pg, g given by:

1 1
Pe=) = Pu=) oo
p#0 p#0 H
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Lower mass bound

Constrained effective potential in the broken phase

1
U(v) = §m§ﬁ2 + A0+ Xg®® + Up(9) + 6M3*(Py + Pg)
+ N0 (15Py + 9Pg) + N6 (45 P} + 54 Py Pg + 45P%)
The fermionic contribution is given by:

2

v 2N 1
Up(s) = 25t | S los o)+ (155 )| +
1 2
St -5 (1= )t |
The cutoff, vev and Higgs boson mass are given by:
246 GeV
A="—— U’ =0 u” =mj3
L Uleen) =0, (vev) = m
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Lower mass bound

Mass bound

In the SM case (A¢ = 0) the lowest accessible Higgs boson mass in a

stable potential is obtained for A = 0 [Gerhold et.al. 2009]
Comparison of lower mass bound from simulations and CEP in the SM case
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Lower mass bound

Cutoff dependence in the CEP (Ny = 1,y; = )

When is a 125 GeV Higgs boson incompatible with the
Higgs-Yukawa-Model?

Cutoff dependence of lower mass bound for various volumes L* from CEP
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Cutoff dependence in the CEP (Ny =1,y = )

When is a 125 GeV Higgs boson incompatible with the
Higgs-Yukawa-Model?

Cutoff dependence of lower mass bound for various volumes L* from CEP
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Mass bound for A\g # 0

v

For A¢ > 0 the potental is eventually stable, even with A < 0

v

How to define lowest accessible Higgs boson mass?

v

Possibility: Demanding positivity of U” () in the scaling regime

(¥ < Umaz ~ 0.5)

Problem: determining that limit will end up in a potential that has
negative curvature directly after U,,q2

v
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Lower mass bound

Higgs boson mass with non-zero \g

Naively (close your eyes and compute my,), the Higgs boson mass can be
reduced down to zero:

A =10 TeV, my = 175 GeV
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Lower mass bound

Looking at the potential
Clear from looking at the potential:

me =my = 175 GeV, A = 10 TeV
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Lower mass bound

Looking at the potential

But...
my =my, = 175 GeV, A = 10 TeV
-3
L =256, = 0.10, A = —0.39
L =384, A6 = 0.10, A = —0.39
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Lower mass bound

HowTo: Lower bound with A\g

» Second minimum might spoils further decrease of the Higgs boson
mass

» Developement of second minimum corresponds to 1st order phase
transition

» Not SM-like — avoid for mass determination
» Scan the phase structure of the model with finite \g

» determine Higgs boson mass in the regime of 2nd order phase
transition but as close to the 1st order transition as possible (future)
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phase structure

CEP for determination of phase strucure

For determining the phase structure in the CEP, also the staggered mode
(ps = (m,m,m,m)) has to be taken into account

U(m,s) = Ut(m, s) + Uf(m, s) + Ud(m, s) + U*(m, s)
Ut = -8k (m2 — 32) + (m2 + 32) + A (m4 + 5% + 6m2s? — 2Ny (m2 + 32))
+ 5\6 (m6 + 8 + 15 (m4s2 + m2s4))
Ud = _% 07&;% log (2 — 45\Nf — 4k ; cos(pp)
+ 8 (m2 + 52) + 185\6 (m4 +st+ 6m2s2))

U =32 (A+ K (9 (m? +52)) ) P& + 38436 P
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CEP for determination of phase strucure

For determining the phase structure in the CEP, also the staggered mode

(ps = (m,m,m,m)) has to be taken into account
U(m, s) = Ut(m, s) + U'(m, 5) + U%(m, 5) + U* (m, 5)
Ut = -8k (m2 — 32) + (m2 + 32) + A (m4 + 5% + 6m2s? — 2Ny (m2 + 32))
+ 5\6 (m6 + 8 + 15 (m4s2 + m2s4))
d 1 5
U =5y Z log(2—4)\Nf—4anos(pu)
0#p#ps W
+ 8 (m2+52)+185\6 (m4+s4+6m2s2))
U =32 (A+ K (9 (m? +52)) ) P& + 38436 P
- 1 1
Pe=y 2 55N, 1 8A(m2 + 52) + 18 Ag (m? + 51 + 6 m2s2
Odpips 2~ §— 432, cos(pu) +8A(m? +s%) + 6 (m? + s% + 6m?2s2)

Minimum of U w.r.t. m and s determines the ground state.
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phase structure

Phase structure in CEP

Qualitatively the CEP gives the expected picture

Minimum of CEP. Lattice: 32% x 64, m; = 175 GeV \g = 0.002
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phase structure

Potential around the phase transition
The potential shows the expected two minima

CEP for: my = 175 GV, A = —0.004, Ag = 0.002, § =510~
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phase structure

Phases from the simulation
However, the simulations look a little bit different...

A6 = 0.10, m¢ = 175 GeV, runs performed on a 123 x 24 lattice
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phase structure

Signs for first order phase transition

Meta stabilities in one ensemble:

Trajectories of magnetization; Lattice: 12% x 24, my = 175 GeéV, A\g = 0.1, A = —0.4
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phase structure

CEP from simulations

U(m) = —log [Frequency of occurence of a magnetization|
Lattice: 123 x 24, my = 175 GeV, Ag = 0.1, A = —0.4, k = 0.11672
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phase structure

Phases from the simulation

A non-perturbative \g

A6 = 1.00, my = 175 GeV, runs performed on a 123 x 24 lattice
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Summary

Summary

Conclusion:

» Showed perturbatively, that the lower Higgs boson mass bound can
be further decreased by adding a ¢® term

» Demonstrated how in principle a lower mass bound could be
obtained non-perturbatively

> Results suggest the existence of a tri-critical point

Attila Nagy
Stabilizing the EW vacuum



Summary

Summary

Conclusion:

» Showed perturbatively, that the lower Higgs boson mass bound can
be further decreased by adding a ¢® term

» Demonstrated how in principle a lower mass bound could be
obtained non-perturbatively

> Results suggest the existence of a tri-critical point
Outlook:
» Establish the nature of the observed phase transitions (FSSA)

» Determine the Higgs boson mass in the vicinity of the tri-critical
point

» Find a better theoretical prescription for the CEP
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Summary

Constrained effective potential

Ground state
Qg:m¢'§l+5<b'eips'z'é2 pS:(W,ﬂ'77T,7T),

Definition of the potential:

V-U(m,s) = —log /D\IID\T/ H dd, e~ ST, 2]
0#p#ps So=VVmg
By —Vig

(O(m,s)) = %/d@od%oe—v‘wm’s)
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Summary

Cutoff dependence in the CEP (more physical setup)
Doing the same for Ny = 3 and the physical mass splitting

Cutoff dependence of lower mass bound for various volumes L* from CEP
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Summary

Cutoff dependence in the CEP (more physical setup)
Doing the same for Ny = 3 and the physical mass splitting

Cutoff dependence of lower mass bound for various volumes L* from CEP
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