Chik Him Wong

Outline

Introduction

Methodology

Implementation

Simulation Details

Spectroscopy Analysis

Fitting Strategies

Preliminary Results

Conclusion

Can a light Higgs impostor hide in composite gauge models?

Chik Him Wong

Lattice Higgs Collaboration (LHC): Zoltán Fodor^{\$}, Kieran Holland^{*}, Julius Kuti[†], Dániel Nógrádi⁻, Chik Him Wong[†]

*: University of California, San Diego *: University of the Pacific \$: University of Wuppertal -: Eötvös University

LATTICE 2013

Chik Him Wong

Outline

- Introduction
- Methodology
- Implementation
- Simulation Details
- Spectroscopy Analysis
- Fitting Strategies
- Preliminary Results
- Conclusion

Outline

- Introduction: Sextet model as Composite Higgs candidate
- Methodology
 - Implementation
 - Simulation Details
- Spectroscopy Analysis
 - Fitting Strategies
 - Preliminary Results on $\beta = 3.20 \ 32^3 \times 64$ Lattices
- Conclusion

Chik Him Wong

Outline

Introduction

Methodology

Implementation

Simulation Details

Spectroscopy Analysis

Fitting Strategies

Preliminary Results

Conclusion

Introduction

- Goal: Look for a Composite Higgs model: An infrared fixed point almost exists + Confining below Electroweak scale ⇒ models at the edge of conformal window
- After Higgs boson discovery : Light 0⁺⁺ Higgs + reproduce detected phenomenology
- Parameter Space: N_C , N_f , Representations of $SU(N_C)$

Chik Him Wong

Outline

- Introduction
- Methodology
- Implementation
- Simulation Details

Spectroscopy Analysis

Fitting Strategies

Preliminary Results

Conclusion

Introduction

- Goal: Look for a Composite Higgs model:
 An infrared fixed point almost exists + Confining below
 Electroweak scale ⇒ models at the edge of conformal window
- After Higgs boson discovery : Light 0⁺⁺ Higgs + reproduce detected phenomenology
 - Parameter Space: N_C , N_f , Representations of $SU(N_C)$

Chik Him Wong

Outline

- Introduction
- Methodology
- Implementation
- Simulation Details

Spectroscopy Analysis

- Fitting Strategies
- Preliminary Results
- Conclusion

Introduction

- Goal: Look for a Composite Higgs model: An infrared fixed point almost exists + Confining below Electroweak scale ⇒ models at the edge of conformal window
- After Higgs boson discovery : Light 0⁺⁺ Higgs + reproduce detected phenomenology
- Parameter Space: N_C , N_f , Representations of $SU(N_C)$

Chik Him Wong

Outline

- Introduction
- Methodology
- Implementation
- Simulation Details

Spectroscopy Analysis

- Fitting Strategies
- Preliminary Results
- Conclusion

Introduction

- Goal: Look for a Composite Higgs model: An infrared fixed point almost exists + Confining below Electroweak scale ⇒ models at the edge of conformal window
- After Higgs boson discovery : Light 0⁺⁺ Higgs + reproduce detected phenomenology
- Parameter Space: N_C , N_f , Representations of $SU(N_C)$

Chik Him Wong

Outline

Introduction

Methodology

Implementation

Simulation Details

Spectroscopy Analysis

- Fitting Strategies
- Preliminary Results
- Conclusion

Introduction - Sextet model as Composite Higgs candidate

• $SU(3) N_f = 2$ Sextet(Two-index symmetric) Model

- Exploratory works suggested a small β -function (DeGrand et al. arXiv:1201.0935)
- Yet seems to be still χ SB
 - Chiral Condensate: non-zero (more in Kieran Holland's talk)
 - Effective Potential: confining
 - Hadron Spectrum: more consistent with %SB than Conformal hypothesis
- \Rightarrow intrinsically very close to Conformal Window
- Can a Higgs Impostor be hidden in this model? ⇒ Investigate 0⁺⁺ spectroscopy

Chik Him Wong

Outline

Introduction

- Methodology
- Implementation
- Simulation Details
- Spectroscopy Analysis
- Fitting Strategies
- Preliminary Results
- Conclusion

- $SU(3) N_f = 2$ Sextet(Two-index symmetric) Model
- Exploratory works suggested a small β -function (DeGrand et al. arXiv:1201.0935)
- Yet seems to be still χ SB
 - Chiral Condensate: non-zero (more in Kieran Holland's talk)
 - Effective Potential: confining
 - Hadron Spectrum: more consistent with %SB than Conformal hypothesis
- \Rightarrow intrinsically very close to Conformal Window
- Can a Higgs Impostor be hidden in this model? ⇒ Investigate 0⁺⁺ spectroscopy

Chik Him Wong

Outline

Introduction

- Methodology
- Implementation
- Simulation Details
- Spectroscopy Analysis
- Fitting Strategies
- Preliminary Results
- Conclusion

- $SU(3) N_f = 2$ Sextet(Two-index symmetric) Model
- Exploratory works suggested a small β-function (DeGrand et al. arXiv:1201.0935)
- Yet seems to be still χ SB
 - Chiral Condensate: non-zero (more in Kieran Holland's talk)
 - Effective Potential: confining
 - Hadron Spectrum: more consistent with χ SB than Conformal hypothesis
- \Rightarrow intrinsically very close to Conformal Window
- Can a Higgs Impostor be hidden in this model? ⇒ Investigate 0⁺⁺ spectroscopy

Chik Him Wong

Outline

Introduction

- Methodology
- Implementation
- Simulation Details
- Spectroscopy Analysis
- Fitting Strategies
- Preliminary Results
- Conclusion

- $SU(3) N_f = 2$ Sextet(Two-index symmetric) Model
- Exploratory works suggested a small β -function (DeGrand et al. arXiv:1201.0935)
- Yet seems to be still χ SB
 - Chiral Condensate: non-zero (more in Kieran Holland's talk)
 - Effective Potential: confining
 - Hadron Spectrum: more consistent with χ SB than Conformal hypothesis
- \Rightarrow intrinsically very close to Conformal Window
- Can a Higgs Impostor be hidden in this model? ⇒ Investigate 0⁺⁺ spectroscopy

Chik Him Wong

Outline

Introduction

- Methodology
- Implementation
- Simulation Details
- Spectroscopy Analysis
- Fitting Strategies
- Preliminary Results
- Conclusion

- $SU(3) N_f = 2$ Sextet(Two-index symmetric) Model
- Exploratory works suggested a small β -function (DeGrand et al. arXiv:1201.0935)
- Yet seems to be still χ SB
 - Chiral Condensate: non-zero (more in Kieran Holland's talk)
 - Effective Potential: confining
 - Hadron Spectrum: more consistent with χ SB than Conformal hypothesis
- \Rightarrow intrinsically very close to Conformal Window
- Can a Higgs Impostor be hidden in this model? ⇒ Investigate 0⁺⁺ spectroscopy

Chik Him Wong

Outline

Introduction

- Methodology
- Implementation
- Simulation Details
- Spectroscopy Analysis
- Fitting Strategies
- Preliminary Results
- Conclusion

- $SU(3) N_f = 2$ Sextet(Two-index symmetric) Model
- Exploratory works suggested a small β -function (DeGrand et al. arXiv:1201.0935)
- Yet seems to be still χ SB
 - Chiral Condensate: non-zero (more in Kieran Holland's talk)
 - Effective Potential: confining
 - Hadron Spectrum: more consistent with χ SB than Conformal hypothesis
- \Rightarrow intrinsically very close to Conformal Window
- Can a Higgs Impostor be hidden in this model? ⇒ Investigate 0⁺⁺ spectroscopy

Chik Him Wong

Outline

Introduction

- Methodology
- Implementation
- Simulation Details
- Spectroscopy Analysis
- Fitting Strategies
- Preliminary Results
- Conclusion

- $SU(3) N_f = 2$ Sextet(Two-index symmetric) Model
- Exploratory works suggested a small β-function (DeGrand et al. arXiv:1201.0935)
- Yet seems to be still χ SB
 - Chiral Condensate: non-zero (more in Kieran Holland's talk)
 - Effective Potential: confining
 - Hadron Spectrum: more consistent with χ SB than Conformal hypothesis
- \Rightarrow intrinsically very close to Conformal Window
- Can a Higgs Impostor be hidden in this model? ⇒ Investigate 0⁺⁺ spectroscopy

Chik Him Wong

Outline

Introduction

- Methodology
- Implementation
- Simulation Details
- Spectroscopy Analysis
- Fitting Strategies
- Preliminary Results
- Conclusion

- $SU(3) N_f = 2$ Sextet(Two-index symmetric) Model
- Exploratory works suggested a small β-function (DeGrand et al. arXiv:1201.0935)
- Yet seems to be still χ SB
 - Chiral Condensate: non-zero (more in Kieran Holland's talk)
 - Effective Potential: confining
 - Hadron Spectrum: more consistent with χSB than Conformal hypothesis
- \Rightarrow intrinsically very close to Conformal Window
- Can a Higgs Impostor be hidden in this model? ⇒ Investigate 0⁺⁺ spectroscopy

Chik Him Wong

Outline

- Introduction
- Methodology
- Implementation
- Simulation Details
- Spectroscopy Analysis
- Fitting Strategies
- Preliminary Result
- Conclusion

Introduction - Sextet model as Composite Higgs candidate

- 0⁺⁺: Most computationally demanding and trickiest channel in spectroscopy, since
 - For fermionic operators (f_0) , two diagrams are involved:

Connected Diagram

Annihilation Diagram

- Annihilation diagram requires Same-time Quark Propagator
 - \Rightarrow Cost of Exact Inversion is prohibitive \rightarrow Stochastic calculation
- For gluonic operators(*G*, 0⁺⁺ glueball), they are typically very noisy. Near Conformal Window, they can be light and coupled to the ground state
 - \Rightarrow a very long trajectory is needed
- The above, possibly together with multi-hadron operators, are expected to mix in the ground state
 - \Rightarrow Correlator Matrix may be needed

Chik Him Wong

Outline

- Introduction
- Methodology
- Implementation
- Simulation Details
- Spectroscopy Analysis
- Fitting Strategies
- Preliminary Results
- Conclusion

Introduction - Sextet model as Composite Higgs candidate

- 0⁺⁺: Most computationally demanding and trickiest channel in spectroscopy, since
 - For fermionic operators (f_0) , two diagrams are involved:

Connected Diagram

Annihilation Diagram

- Annihilation diagram requires Same-time Quark Propagator
 - \Rightarrow Cost of Exact Inversion is prohibitive \rightarrow Stochastic calculation
- For gluonic operators(*G*, 0⁺⁺ glueball),they are typically very noisy. Near Conformal Window, they can be light and coupled to the ground state
 - \Rightarrow a very long trajectory is needed
- The above, possibly together with multi-hadron operators, are expected to mix in the ground state
 - \Rightarrow Correlator Matrix may be needed

Chik Him Wong

Outline

- Introduction
- Methodology

Implementation

Simulation Details

Spectroscopy Analysis

Fitting Strategies

Preliminary Resul

Conclusion

Introduction - Sextet model as Composite Higgs candidate

• 0⁺⁺: Most computationally demanding and trickiest channel in spectroscopy, since

• For fermionic operators (f_0) , two diagrams are involved:

Connected Diagram

Annihilation Diagram

- Annihilation diagram requires Same-time Quark Propagator
 ⇒ Cost of Exact Inversion is prohibitive →Stochastic calculation
- For gluonic operators(*G*, 0⁺⁺ glueball),they are typically very noisy. Near Conformal Window, they can be light and coupled to the ground state

 \Rightarrow a very long trajectory is needed

- The above, possibly together with multi-hadron operators, are expected to mix in the ground state
 - \Rightarrow Correlator Matrix may be needed

Chik Him Wong

Outline

- Introduction
- Methodology

Implementation

Simulation Details

Spectroscopy Analysis

Fitting Strategies

Preliminary Result

Conclusion

Introduction - Sextet model as Composite Higgs candidate

• 0⁺⁺: Most computationally demanding and trickiest channel in spectroscopy, since

• For fermionic operators (f_0) , two diagrams are involved:

Connected Diagram

Annihilation Diagram

- Annihilation diagram requires Same-time Quark Propagator
 ⇒ Cost of Exact Inversion is prohibitive →Stochastic calculation
- For gluonic operators (G, 0^{++} glueball), they are typically very noisy. Near Conformal Window, they can be light and coupled to the ground state
 - \Rightarrow a very long trajectory is needed
- The above,possibly together with multi-hadron operators, are expected to mix in the ground state
 - \Rightarrow Correlator Matrix may be needed

Chik Him Wong

Outline

- Introduction
- Methodology

Implementation

Simulation Details

Spectroscopy Analysis

Fitting Strategies

Preliminary Result

Conclusion

Introduction - Sextet model as Composite Higgs candidate

• 0⁺⁺: Most computationally demanding and trickiest channel in spectroscopy, since

• For fermionic operators (f_0) , two diagrams are involved:

Connected Diagram

Annihilation Diagram

- Annihilation diagram requires Same-time Quark Propagator
 ⇒ Cost of Exact Inversion is prohibitive →Stochastic calculation
- For gluonic operators $(G, 0^{++}$ glueball), they are typically very noisy. Near Conformal Window, they can be light and coupled to the ground state

 \Rightarrow a very long trajectory is needed

- The above, possibly together with multi-hadron operators, are expected to mix in the ground state
 - \Rightarrow Correlator Matrix may be needed

Chik Him Wong

- Outline
- Introduction
- Methodology
- Implementation
- Simulation Details
- Spectroscopy Analysis
- Fitting Strategies
- Preliminary Results
- Conclusion

Methodology - Implementation

Staggered formalism:

- $\Delta[\operatorname{Tr} M^{-1}(t,t)] \sim \langle \bar{\psi}\psi \rangle / m, m\Delta[\operatorname{Tr} (M^{-1}(t,t')[M^{-1}(t,t')]^{\dagger})] \sim \langle \bar{\psi}\psi \rangle^2$ • $\langle \bar{\psi}\psi \rangle < 1 \Rightarrow m \langle \operatorname{Tr} (M^{-1}(t,t')[M^{-1}(t,t')]^{\dagger}) \rangle$ more preferred
- Same-time Quark Propagators needed \Rightarrow Stochastic Method
 - Basic Idea: $M^{-1} \approx M^{-1} \langle \eta \eta^{\dagger} \rangle_{\eta} \equiv \langle \phi \eta^{\dagger} \rangle_{\eta}$, η : Z(2) random noise
 - "Dilution" employed: η projected to individual colors, timeslices and Even/Odd spatial partitions: $\eta_{12}^{(1)}(t)$ and $\eta_{23}^{(2)}(t)$

 - Connected Diagram:
 - $C(t) = -(-1)^{t} \mathrm{Tr} \langle \varphi_{[E]}(t,t_0) \varphi_{[E]}(t,t_0)^{\dagger} \varphi_{[O]}(t,t_0) \varphi_{[O]}(t,t_0)^{\dagger} \rangle_{U,\eta,t_0}$
 - Annihilation Diagram:
 - $$\begin{split} D(t) &= \frac{N_{L}}{4} \langle \mathrm{Tr}[\varphi_{[E]}(0,t_{0}+t)\varphi_{[E]}(0,t_{0}+t)^{\dagger} + \varphi_{[O]}(0,t_{0}+t)\varphi_{[O]}(0,t_{0}+t)^{\dagger}] \mathrm{Tr}[\varphi_{[E]}(0,t_{0})\varphi_{[E]}(0,t_{0})^{\dagger} + \varphi_{[O]}(0,t_{0})\varphi_{[O]}(0,t_{0})^{\dagger}] \rangle_{U,\eta,t_{0}} \end{split}$$
 - In case of finite momenta
 - $\varphi_{[E/O]}(t,t_0) \to e^{-i\vec{y}\cdot\vec{p}}\varphi_{[E/O]}(t_0+t,e^{i\vec{x}\cdot\vec{p}}\eta_{[E/O]}(t_0))$
 - $(\boldsymbol{\varphi}_{[E/O]}(t,t_0)^{\dagger} \text{ unchanged})$
 - 1 set of noise vectors per gauge configuration
 - different implementations and dilution schemes are possible,

Chik Him Wong

- Outline
- Introduction
- Methodology
- Implementation
- Simulation Details
- Spectroscopy Analysis
- Fitting Strategies
- Preliminary Result
- Conclusion

Methodology - Implementation

Staggered formalism:

- $\Delta[\operatorname{Tr} M^{-1}(t,t)] \sim \langle \bar{\psi} \psi \rangle / m, m \Delta[\operatorname{Tr} (M^{-1}(t,t')[M^{-1}(t,t')]^{\dagger})] \sim \langle \bar{\psi} \psi \rangle^2$
- Same-time Quark Propagators needed \Rightarrow Stochastic Method
 - Basic Idea: $M^{-1} \approx M^{-1} \langle \eta \eta^{\dagger} \rangle_{\eta} \equiv \langle \phi \eta^{\dagger} \rangle_{\eta}, \eta: Z(2)$ random noise
 - "Dilution" employed: η projected to individual colors, timeslices and Even/Odd spatial partitions: $\eta_{in}^{(n)}(t)$ and $\eta_{in}^{(n)}(t)$

 - Connected Diagram:
 - $C(t) = -(-1)^{t^{+}} \mathrm{Tr} \langle \phi_{[E]}(t,t_0) \phi_{[E]}(t,t_0)^{\dagger} \phi_{[O]}(t,t_0) \phi_{[O]}(t,t_0)^{\dagger} \rangle_{U,\eta,t_0}$
 - Annihilation Diagram:
 - $$\begin{split} D(t) &= \frac{N_{E}}{4} \langle \mathrm{Tr}[\boldsymbol{\varphi}_{[E]}(0,t_{0}+t) \boldsymbol{\varphi}_{[E]}(0,t_{0}+t)^{\dagger} + \boldsymbol{\varphi}_{[O]}(0,t_{0}+t) \boldsymbol{\varphi}_{[O]}(0,t_{0}+t) \boldsymbol{\varphi}_{[O]}(0,t_{0}+t) \boldsymbol{\varphi}_{[O]}(0,t_{0})^{\dagger} \\ t)^{\dagger}] \mathrm{Tr}[\boldsymbol{\varphi}_{[E]}(0,t_{0}) \boldsymbol{\varphi}_{[E]}(0,t_{0})^{\dagger} + \boldsymbol{\varphi}_{[O]}(0,t_{0}) \boldsymbol{\varphi}_{[O]}(0,t_{0})^{\dagger}] \rangle_{U,\eta,t_{0}} \end{split}$$
 - In case of finite momenta
 - $\varphi_{[E/O]}(t,t_0) \to e^{-t\vec{y}\cdot\vec{p}}\varphi_{[E/O]}(t_0+t,e^{t\vec{x}\cdot\vec{p}}\eta_{[E/O]}(t_0))$
 - $(\varphi_{[E/O]}(t,t_0)^{\dagger} \text{ unchanged})$
 - 1 set of noise vectors per gauge configuration
 - different implementations and dilution schemes are possible,

Chik Him Wong

- Outline
- Introduction
- Methodology
- Implementation
- Simulation Details
- Spectroscopy Analysis
- Fitting Strategies
- Preliminary Results
- Conclusion

Methodology - Implementation

Staggered formalism:

- $\Delta[\operatorname{Tr} M^{-1}(t,t)] \sim \langle \bar{\psi} \psi \rangle / m, m \Delta[\operatorname{Tr} (M^{-1}(t,t')[M^{-1}(t,t')]^{\dagger})] \sim \langle \bar{\psi} \psi \rangle^2$
- $\langle \bar{\psi}\psi \rangle < 1 \Rightarrow m \langle \operatorname{Tr} \left(M^{-1}(t,t') [M^{-1}(t,t')]^{\dagger} \right) \rangle$ more preferred
- Same-time Quark Propagators needed ⇒ Stochastic Method
 - Basic Idea: $M^{-1} \approx M^{-1} \langle \eta \eta^{\dagger} \rangle_{\eta} \equiv \langle \phi \eta^{\dagger} \rangle_{\eta}, \eta: Z(2)$ random noise
 - "Dilution" employed: η projected to individual colors, timeslices and Even/Odd spatial partitions: $\eta_{in}^{(n)}(t)$ and $\eta_{in}^{(n)}(t)$
 - $\varphi_{[E/O]}(t,t_0) \equiv \varphi_{[E/O]}(t_0+t,\eta_{[E/O]}(t_0))$
 - Connected Diagram:
 - $C(t) = -(-1)^{t} \text{Tr} \langle \varphi_{[E]}(t,t_{0}) \varphi_{[E]}(t,t_{0})^{\dagger} \varphi_{[O]}(t,t_{0}) \varphi_{[O]}(t,t_{0})^{\dagger} \rangle_{U,\eta_{i},t_{0}}$
 - Annihilation Diagram:
 - $D(t) = \frac{N_{f}}{4} \langle \operatorname{Tr}[\boldsymbol{\varphi}_{[E]}(0, t_{0} + t)\boldsymbol{\varphi}_{[E]}(0, t_{0} + t)^{\dagger} + \boldsymbol{\varphi}_{[O]}(0, t_{0} + t)\boldsymbol{\varphi}_{[O]}(0, t_{0} + t)^{\dagger}] \operatorname{Tr}[\boldsymbol{\varphi}_{[E]}(0, t_{0})\boldsymbol{\varphi}_{[E]}(0, t_{0})^{\dagger} + \boldsymbol{\varphi}_{[O]}(0, t_{0})\boldsymbol{\varphi}_{[O]}(0, t_{0})^{\dagger}] \rangle_{U,\eta,t_{0}}$
 - In case of finite momenta
 - $\varphi_{[E/O]}(t,t_0) \rightarrow e^{-i\vec{y}\cdot\vec{p}}\varphi_{[E/O]}(t_0+t,e^{i\vec{x}\cdot\vec{p}}\eta_{[E/O]}(t_0))$
 - $(\varphi_{[E/O]}(t,t_0)^{\dagger} \text{ unchanged})$
 - 1 set of noise vectors per gauge configuration
 - different implementations and dilution schemes are possible,

Chik Him Wong

- Outline
- Introduction
- Methodology
- Implementation
- Simulation Details
- Spectroscopy Analysis
- Fitting Strategies
- Preliminary Results
- Conclusion

Methodology - Implementation

Staggered formalism:

 $\langle \text{Tr}M^{-1}(t,t) \rangle = m \langle \text{Tr}(M^{-1}(t,t')[M^{-1}(t,t')]^{\dagger}) \rangle$, but they fluctuate differently:

- $\Delta[\operatorname{Tr} M^{-1}(t,t)] \sim \langle \bar{\psi} \psi \rangle / m, m \Delta[\operatorname{Tr} (M^{-1}(t,t')[M^{-1}(t,t')]^{\dagger})] \sim \langle \bar{\psi} \psi \rangle^2$
- $\langle \bar{\psi}\psi \rangle < 1 \Rightarrow m \langle \operatorname{Tr} \left(M^{-1}(t,t') [M^{-1}(t,t')]^{\dagger} \right) \rangle$ more preferred
- Same-time Quark Propagators needed \Rightarrow Stochastic Method
 - Basic Idea: $M^{-1} \approx M^{-1} \langle \eta \eta^{\dagger} \rangle_{\eta} \equiv \langle \phi \eta^{\dagger} \rangle_{\eta}$, $\eta: Z(2)$ random noise
 - "Dilution" employed: η projected to individual colors, timeslices and Even/Odd spatial partitions: $\eta^a_{FI}(t)$ and $\eta^a_{OI}(t)$
 - $\varphi_{[E/O]}(t,t_0) \equiv \varphi_{[E/O]}(t_0+t,\eta_{[E/O]}(t_0))$
 - Connected Diagram:

 $C(t) = -(-1)^{t} \operatorname{Tr} \langle \varphi_{[E]}(t,t_0) \varphi_{[E]}(t,t_0)^{\dagger} - \varphi_{[O]}(t,t_0) \varphi_{[O]}(t,t_0)^{\dagger} \rangle_{U,\eta,t_0}$

Annihilation Diagram:

$$\begin{split} D(t) &= \frac{N_{f}}{4} \langle \mathrm{Tr}[\varphi_{[E]}(0,t_{0}+t)\varphi_{[E]}(0,t_{0}+t)^{\dagger} + \varphi_{[O]}(0,t_{0}+t)\varphi_{[O]}(0,t_{0}+t) \\ t)^{\dagger}]\mathrm{Tr}[\varphi_{[E]}(0,t_{0})\varphi_{[E]}(0,t_{0})^{\dagger} + \varphi_{[O]}(0,t_{0})\varphi_{[O]}(0,t_{0})^{\dagger}] \rangle_{U,\eta,t_{0}} \end{split}$$

- In case of finite momenta,
- 1 set of noise vectors per gauge configuration
- different implementations and dilution schemes are possible,

Chik Him Wong

- Outline
- Introduction
- Methodology
- Implementation
- Simulation Details
- Spectroscopy Analysis
- Fitting Strategies
- Preliminary Results
- Conclusion

Methodology - Implementation

Staggered formalism:

 $\langle \text{Tr}M^{-1}(t,t) \rangle = m \langle \text{Tr}(M^{-1}(t,t')[M^{-1}(t,t')]^{\dagger}) \rangle$, but they fluctuate differently:

- $\Delta[\operatorname{Tr} M^{-1}(t,t)] \sim \langle \bar{\psi} \psi \rangle / m, m \Delta[\operatorname{Tr} \left(M^{-1}(t,t') [M^{-1}(t,t')]^{\dagger} \right)] \sim \langle \bar{\psi} \psi \rangle^2$
- $\langle \bar{\psi}\psi \rangle < 1 \Rightarrow m \langle \operatorname{Tr} \left(M^{-1}(t,t') [M^{-1}(t,t')]^{\dagger} \right) \rangle$ more preferred
- Same-time Quark Propagators needed \Rightarrow Stochastic Method
 - Basic Idea: $M^{-1} \approx M^{-1} \langle \eta \eta^{\dagger} \rangle_{\eta} \equiv \langle \phi \eta^{\dagger} \rangle_{\eta}, \eta: Z(2)$ random noise
 - "Dilution" employed: η projected to individual colors, timeslices and Even/Odd spatial partitions: $\eta^a_{El}(t)$ and $\eta^a_{Ol}(t)$
 - $\varphi_{[E/O]}(t,t_0) \equiv \varphi_{[E/O]}(t_0+t,\eta_{[E/O]}(t_0))$
 - Connected Diagram:

 $C(t) = -(-1)^{t} \mathrm{Tr} \langle \varphi_{[E]}(t,t_{0}) \varphi_{[E]}(t,t_{0})^{\dagger} - \varphi_{[O]}(t,t_{0}) \varphi_{[O]}(t,t_{0})^{\dagger} \rangle_{U,\eta,t_{0}}$

Annihilation Diagram:

$$\begin{split} D(t) &= \frac{N_{f}}{4} \langle \mathrm{Tr}[\varphi_{[E]}(0,t_{0}+t)\varphi_{[E]}(0,t_{0}+t)^{\dagger} + \varphi_{[O]}(0,t_{0}+t)\varphi_{[O]}(0,t_{0}+t)\varphi_{[O]}(0,t_{0}+t)^{\dagger}] \\ Tr[\varphi_{[E]}(0,t_{0})\varphi_{[E]}(0,t_{0})^{\dagger} + \varphi_{[O]}(0,t_{0})\varphi_{[O]}(0,t_{0})^{\dagger}] \rangle_{U,\eta,t_{0}} \end{split}$$

- In case of finite momenta,
- 1 set of noise vectors per gauge configuration
- different implementations and dilution schemes are possible,

Chik Him Wong

- Outline
- Introduction
- Methodology
- Implementation
- Simulation Details
- Spectroscopy Analysis
- Fitting Strategies
- Preliminary Result
- Conclusion

Methodology - Implementation

Staggered formalism:

 $\langle \operatorname{Tr} M^{-1}(t,t) \rangle = m \langle \operatorname{Tr} (M^{-1}(t,t')[M^{-1}(t,t')]^{\dagger}) \rangle$, but they fluctuate differently:

- $\Delta[\operatorname{Tr} M^{-1}(t,t)] \sim \langle \bar{\psi}\psi \rangle / m, m\Delta[\operatorname{Tr} (M^{-1}(t,t')[M^{-1}(t,t')]^{\dagger})] \sim \langle \bar{\psi}\psi \rangle^2$
- $\langle \bar{\psi}\psi \rangle < 1 \Rightarrow m \langle \operatorname{Tr} \left(M^{-1}(t,t') [M^{-1}(t,t')]^{\dagger} \right) \rangle$ more preferred
- Same-time Quark Propagators needed \Rightarrow Stochastic Method
 - Basic Idea: $M^{-1} \approx M^{-1} \langle \eta \eta^{\dagger} \rangle_{\eta} \equiv \langle \phi \eta^{\dagger} \rangle_{\eta}, \eta: Z(2)$ random noise
 - "Dilution" employed: η projected to individual colors, timeslices and Even/Odd spatial partitions: $\eta^a_{[E]}(t)$ and $\eta^a_{[O]}(t)$
 - $\varphi_{[E/O]}(t,t_0) \equiv \varphi_{[E/O]}(t_0+t,\eta_{[E/O]}(t_0))$
 - Connected Diagram:

 $C(t) = -(-1)^{t} \operatorname{Tr} \langle \varphi_{[E]}(t,t_0) \varphi_{[E]}(t,t_0)^{\dagger} - \varphi_{[O]}(t,t_0) \varphi_{[O]}(t,t_0)^{\dagger} \rangle_{U,\eta,t_0}$

Annihilation Diagram:

 $D(t) = \frac{N_{f}}{4} \langle \operatorname{Tr}[\varphi_{[E]}(0, t_{0} + t)\varphi_{[E]}(0, t_{0} + t)^{\dagger} + \varphi_{[O]}(0, t_{0} + t)\varphi_{[O]}(0, t_{0} + t)^{\dagger}] \operatorname{Tr}[\varphi_{[E]}(0, t_{0})\varphi_{[E]}(0, t_{0})^{\dagger} + \varphi_{[O]}(0, t_{0})\varphi_{[O]}(0, t_{0})^{\dagger}] \rangle_{U,\eta,t_{0}}$

- In case of finite momenta,
 - $\varphi_{[E/O]}(t,t_0) \to e^{-t\vec{j}\cdot\vec{p}} \varphi_{[E/O]}(t_0+t,e^{t\vec{k}\cdot\vec{p}}\eta_{[E/O]}(t_0))$ $(\varphi_{[E/O]}(t,t_0)^{\dagger} \text{ unchanged})$
- 1 set of noise vectors per gauge configuration
- different implementations and dilution schemes are possible,

Chik Him Wong

- Outline
- Introduction
- Methodology
- Implementation
- Simulation Details
- Spectroscopy Analysis
- Fitting Strategies
- Preliminary Result
- Conclusion

Methodology - Implementation

Staggered formalism:

 $\langle \operatorname{Tr} M^{-1}(t,t) \rangle = m \langle \operatorname{Tr} (M^{-1}(t,t')[M^{-1}(t,t')]^{\dagger}) \rangle$, but they fluctuate differently:

- $\Delta[\operatorname{Tr} M^{-1}(t,t)] \sim \langle \bar{\psi}\psi \rangle / m, m\Delta[\operatorname{Tr} (M^{-1}(t,t')[M^{-1}(t,t')]^{\dagger})] \sim \langle \bar{\psi}\psi \rangle^2$
- $\langle \bar{\psi}\psi \rangle < 1 \Rightarrow m \langle \operatorname{Tr} \left(M^{-1}(t,t') [M^{-1}(t,t')]^{\dagger} \right) \rangle$ more preferred
- Same-time Quark Propagators needed \Rightarrow Stochastic Method
 - Basic Idea: $M^{-1} \approx M^{-1} \langle \eta \eta^{\dagger} \rangle_{\eta} \equiv \langle \varphi \eta^{\dagger} \rangle_{\eta}, \eta: Z(2)$ random noise
 - "Dilution" employed: η projected to individual colors, timeslices and Even/Odd spatial partitions: $\eta^a_{[E]}(t)$ and $\eta^a_{[O]}(t)$
 - $\varphi_{[E/O]}(t,t_0) \equiv \varphi_{[E/O]}(t_0+t,\eta_{[E/O]}(t_0))$
 - Connected Diagram:

 $C(t) = -(-1)^{t} \operatorname{Tr} \langle \varphi_{[E]}(t,t_{0}) \varphi_{[E]}(t,t_{0})^{\dagger} - \varphi_{[O]}(t,t_{0}) \varphi_{[O]}(t,t_{0})^{\dagger} \rangle_{U,\eta,t_{0}}$

Annihilation Diagram:

$$\begin{split} D(t) &= \frac{N_{f}}{4} \langle \mathrm{Tr}[\varphi_{[E]}(0,t_{0}+t)\varphi_{[E]}(0,t_{0}+t)^{\dagger} + \varphi_{[O]}(0,t_{0}+t)\varphi_{[O]}(0,t_{0}+t) \\ t)^{\dagger}]\mathrm{Tr}[\varphi_{[E]}(0,t_{0})\varphi_{[E]}(0,t_{0})^{\dagger} + \varphi_{[O]}(0,t_{0})\varphi_{[O]}(0,t_{0})^{\dagger}] \rangle_{U,\eta,t_{0}} \end{split}$$

- In case of finite momenta,
 - $\varphi_{[E/O]}(t,t_0) \to e^{-t\vec{j}\cdot\vec{p}} \varphi_{[E/O]}(t_0+t,e^{t\vec{k}\cdot\vec{p}}\eta_{[E/O]}(t_0))$ $(\varphi_{[E/O]}(t,t_0)^{\dagger} \text{ unchanged})$
- 1 set of noise vectors per gauge configuration
- different implementations and dilution schemes are possible,

Chik Him Wong

- Outline
- Introduction
- Methodology
- Implementation
- Simulation Details
- Spectroscopy Analysis
- Fitting Strategies
- Preliminary Results
- Conclusion

Methodology - Implementation

Staggered formalism:

- $\Delta[\operatorname{Tr} M^{-1}(t,t)] \sim \langle \bar{\psi} \psi \rangle / m, m \Delta[\operatorname{Tr} \left(M^{-1}(t,t') [M^{-1}(t,t')]^{\dagger} \right)] \sim \langle \bar{\psi} \psi \rangle^2$
- $\langle \bar{\psi}\psi \rangle < 1 \Rightarrow m \langle \operatorname{Tr} \left(M^{-1}(t,t') [M^{-1}(t,t')]^{\dagger} \right) \rangle$ more preferred
- Same-time Quark Propagators needed \Rightarrow Stochastic Method
 - Basic Idea: $M^{-1} \approx M^{-1} \langle \eta \eta^{\dagger} \rangle_{\eta} \equiv \langle \varphi \eta^{\dagger} \rangle_{\eta}, \eta: Z(2)$ random noise
 - "Dilution" employed: η projected to individual colors, timeslices and Even/Odd spatial partitions: $\eta^a_{[E]}(t)$ and $\eta^a_{[O]}(t)$
 - $\varphi_{[E/O]}(t,t_0) \equiv \varphi_{[E/O]}(t_0+t,\eta_{[E/O]}(t_0))$
 - Connected Diagram: $C(t) = -(-1)^{t} \operatorname{Tr} \langle \varphi_{[E]}(t,t_{0}) \varphi_{[E]}(t,t_{0})^{\dagger} - \varphi_{[O]}(t,t_{0}) \varphi_{[O]}(t,t_{0})^{\dagger} \rangle_{U,\eta,t_{0}}$
 - $$\begin{split} D(t) &= \frac{N_f}{4} \langle \mathrm{Tr}[\varphi_{[E]}(0,t_0+t)\varphi_{[E]}(0,t_0+t)^{\dagger} + \varphi_{[O]}(0,t_0+t)\varphi_{[O]}(0,t_0+t)\varphi_{[O]}(0,t_0+t)^{\dagger}] \mathrm{Tr}[\varphi_{[E]}(0,t_0)\varphi_{[E]}(0,t_0)^{\dagger} + \varphi_{[O]}(0,t_0)\varphi_{[O]}(0,t_0)^{\dagger}] \rangle_{U,\eta,t_0} \end{split}$$
 - In case of finite momenta,
 - $\varphi_{[E/O]}(t,t_0) \to e^{-i\vec{y}\cdot\vec{p}}\varphi_{[E/O]}(t_0+t,e^{i\vec{x}\cdot\vec{p}}\eta_{[E/O]}(t_0))$ $(\varphi_{E/O}(t,t_0)^{\dagger} \text{ unchanged})$
 - 1 set of noise vectors per gauge configuration
 - different implementations and dilution schemes are possible,

Chik Him Wong

- Outline
- Introduction
- Methodology
- Implementation
- Simulation Details
- Spectroscopy Analysis
- Fitting Strategies
- Preliminary Result
- Conclusion

Methodology - Implementation

Staggered formalism:

- $\Delta[\operatorname{Tr} M^{-1}(t,t)] \sim \langle \bar{\psi} \psi \rangle / m, m \Delta[\operatorname{Tr} (M^{-1}(t,t')[M^{-1}(t,t')]^{\dagger})] \sim \langle \bar{\psi} \psi \rangle^2$
- $\langle \bar{\psi}\psi \rangle < 1 \Rightarrow m \langle \operatorname{Tr} \left(M^{-1}(t,t') [M^{-1}(t,t')]^{\dagger} \right) \rangle$ more preferred
- Same-time Quark Propagators needed \Rightarrow Stochastic Method
 - Basic Idea: $M^{-1} \approx M^{-1} \langle \eta \eta^{\dagger} \rangle_{\eta} \equiv \langle \varphi \eta^{\dagger} \rangle_{\eta}, \eta: Z(2)$ random noise
 - "Dilution" employed: η projected to individual colors, timeslices and Even/Odd spatial partitions: $\eta^a_{[E]}(t)$ and $\eta^a_{[O]}(t)$
 - $\varphi_{[E/O]}(t,t_0) \equiv \varphi_{[E/O]}(t_0+t,\eta_{[E/O]}(t_0))$
 - Connected Diagram: $C(t) = -(-1)^{t} \text{Tr} \langle \varphi_{[E]}(t,t_{0}) \varphi_{[E]}(t,t_{0})^{\dagger} - \varphi_{[O]}(t,t_{0}) \varphi_{[O]}(t,t_{0})^{\dagger} \rangle_{U,\eta,t_{0}}$
 - Annihilation Diagram:
 - $D(t) = \frac{N_f}{4} \langle \text{Tr}[\varphi_{[E]}(0,t_0+t)\varphi_{[E]}(0,t_0+t)^{\dagger} + \varphi_{[O]}(0,t_0+t)\varphi_{[O]}(0,t_0+t)\varphi_{[O]}(0,t_0+t)^{\dagger}] \\ \text{Tr}[\varphi_{[E]}(0,t_0)\varphi_{[E]}(0,t_0)^{\dagger} + \varphi_{[O]}(0,t_0)\varphi_{[O]}(0,t_0)^{\dagger}] \rangle_{U,\eta,t_0}$
 - In case of finite momenta, $\varphi_{[E/O]}(t,t_0) \rightarrow e^{-\vec{y}\cdot\vec{p}}\varphi_{[E/O]}(t_0+t,e^{\vec{x}\cdot\vec{p}}\eta_{[E/O]}(t_0))$
 - 1 set of noise vectors per gauge configuration
 - different implementations and dilution schemes are possible,

Chik Him Wong

- Outline
- Introduction
- Methodology
- Implementation
- Simulation Details
- Spectroscopy Analysis
- Fitting Strategies
- Preliminary Result
- Conclusion

Methodology - Implementation

Staggered formalism:

- $\Delta[\operatorname{Tr} M^{-1}(t,t)] \sim \langle \bar{\psi} \psi \rangle / m, m \Delta[\operatorname{Tr} (M^{-1}(t,t')[M^{-1}(t,t')]^{\dagger})] \sim \langle \bar{\psi} \psi \rangle^2$
- $\langle \bar{\psi}\psi \rangle < 1 \Rightarrow m \langle \operatorname{Tr} \left(M^{-1}(t,t') [M^{-1}(t,t')]^{\dagger} \right) \rangle$ more preferred
- Same-time Quark Propagators needed \Rightarrow Stochastic Method
 - Basic Idea: $M^{-1} \approx M^{-1} \langle \eta \eta^{\dagger} \rangle_{\eta} \equiv \langle \phi \eta^{\dagger} \rangle_{\eta}, \eta: Z(2)$ random noise
 - "Dilution" employed: η projected to individual colors, timeslices and Even/Odd spatial partitions: $\eta^a_{[E]}(t)$ and $\eta^a_{[O]}(t)$
 - $\varphi_{[E/O]}(t,t_0) \equiv \varphi_{[E/O]}(t_0+t,\eta_{[E/O]}(t_0))$
 - Connected Diagram: $C(t) = -(-1)^{t} \text{Tr} \langle \varphi_{[E]}(t,t_{0}) \varphi_{[E]}(t,t_{0})^{\dagger} - \varphi_{[O]}(t,t_{0}) \varphi_{[O]}(t,t_{0})^{\dagger} \rangle_{U,\eta,t_{0}}$
 - Annihilation Diagram: $D(t) = \frac{N_f}{4} \langle \operatorname{Tr}[\varphi_{[E]}(0, t_0 + t)\varphi_{[E]}(0, t_0 + t)^{\dagger} + \varphi_{[O]}(0, t_0 + t)\varphi_{[O]}(0, t_0 + t)\varphi_{[O]}(0, t_0 + t)^{\dagger}]$ $Tr[\varphi_{[E]}(0, t_0)\varphi_{[E]}(0, t_0)^{\dagger} + \varphi_{[O]}(0, t_0)\varphi_{[O]}(0, t_0)^{\dagger}] \rangle_{U,\eta,t_0}$
 - In case of finite momenta, $\varphi_{[E/O]}(t,t_0) \rightarrow e^{-i\vec{y}\cdot\vec{p}} \varphi_{[E/O]}(t_0+t,e^{i\vec{x}\cdot\vec{p}}\eta_{[E/O]}(t_0))$ $(\varphi_{[E/O]}(t,t_0)^{\dagger} \text{ unchanged})$
 - 1 set of noise vectors per gauge configuration
 - different implementations and dilution schemes are possible,

Chik Him Wong

- Outline
- Introduction
- Methodology
- Implementation
- Simulation Details
- Spectroscopy Analysis
- Fitting Strategies
- Preliminary Results
- Conclusion

Methodology - Implementation

Staggered formalism:

- $\Delta[\operatorname{Tr} M^{-1}(t,t)] \sim \langle \bar{\psi}\psi \rangle / m, m\Delta[\operatorname{Tr} (M^{-1}(t,t')[M^{-1}(t,t')]^{\dagger})] \sim \langle \bar{\psi}\psi \rangle^2$
- $\langle \bar{\psi}\psi \rangle < 1 \Rightarrow m \langle \operatorname{Tr} \left(M^{-1}(t,t') [M^{-1}(t,t')]^{\dagger} \right) \rangle$ more preferred
- Same-time Quark Propagators needed \Rightarrow Stochastic Method
 - Basic Idea: $M^{-1} \approx M^{-1} \langle \eta \eta^{\dagger} \rangle_{\eta} \equiv \langle \phi \eta^{\dagger} \rangle_{\eta}, \eta: Z(2)$ random noise
 - "Dilution" employed: η projected to individual colors, timeslices and Even/Odd spatial partitions: $\eta^a_{[E]}(t)$ and $\eta^a_{[O]}(t)$
 - $\varphi_{[E/O]}(t,t_0) \equiv \varphi_{[E/O]}(t_0+t,\eta_{[E/O]}(t_0))$
 - Connected Diagram: $C(t) = -(-1)^{t} \text{Tr} \langle \varphi_{[E]}(t,t_{0}) \varphi_{[E]}(t,t_{0})^{\dagger} - \varphi_{[O]}(t,t_{0}) \varphi_{[O]}(t,t_{0})^{\dagger} \rangle_{U,\eta,t_{0}}$
 - Annihilation Diagram: $D(t) = \frac{N_f}{4} \langle \operatorname{Tr}[\varphi_{[E]}(0, t_0 + t)\varphi_{[E]}(0, t_0 + t)^{\dagger} + \varphi_{[O]}(0, t_0 + t)\varphi_{[O]}(0, t_0 + t)\varphi_{[O]}(0, t_0 + t)^{\dagger}] \\
 + t)^{\dagger}]\operatorname{Tr}[\varphi_{[E]}(0, t_0)\varphi_{[E]}(0, t_0)^{\dagger} + \varphi_{[O]}(0, t_0)\varphi_{[O]}(0, t_0)^{\dagger}] \rangle_{U,\eta,t_0}$
 - In case of finite momenta, $\varphi_{[E/O]}(t,t_0) \rightarrow e^{-i\vec{y}\cdot\vec{p}}\varphi_{[E/O]}(t_0+t,e^{i\vec{x}\cdot\vec{p}}\eta_{[E/O]}(t_0))$ $(\varphi_{[E/O]}(t,t_0)^{\dagger} \text{ unchanged})$
 - 1 set of noise vectors per gauge configuration
 - different implementations and dilution schemes are possible,

Chik Him Wong

- Outline
- Introduction
- Methodology
- Implementation
- Simulation Details
- Spectroscopy Analysis
- Fitting Strategies
- Preliminary Result
- Conclusion

Methodology - Implementation

Staggered formalism:

- $\Delta[\operatorname{Tr} M^{-1}(t,t)] \sim \langle \bar{\psi} \psi \rangle / m, m \Delta[\operatorname{Tr} (M^{-1}(t,t')[M^{-1}(t,t')]^{\dagger})] \sim \langle \bar{\psi} \psi \rangle^2$
- $\langle \bar{\psi}\psi \rangle < 1 \Rightarrow m \langle \operatorname{Tr} \left(M^{-1}(t,t') [M^{-1}(t,t')]^{\dagger} \right) \rangle$ more preferred
- Same-time Quark Propagators needed \Rightarrow Stochastic Method
 - Basic Idea: $M^{-1} \approx M^{-1} \langle \eta \eta^{\dagger} \rangle_{\eta} \equiv \langle \phi \eta^{\dagger} \rangle_{\eta}, \eta: Z(2)$ random noise
 - "Dilution" employed: η projected to individual colors, timeslices and Even/Odd spatial partitions: $\eta^a_{[E]}(t)$ and $\eta^a_{[O]}(t)$
 - $\varphi_{[E/O]}(t,t_0) \equiv \varphi_{[E/O]}(t_0+t,\eta_{[E/O]}(t_0))$
 - Connected Diagram: $C(t) = -(-1)^{t} \text{Tr} \langle \varphi_{[E]}(t,t_{0}) \varphi_{[E]}(t,t_{0})^{\dagger} - \varphi_{[O]}(t,t_{0}) \varphi_{[O]}(t,t_{0})^{\dagger} \rangle_{U,\eta,t_{0}}$
 - Annihilation Diagram: $D(t) = \frac{N_f}{4} \langle \operatorname{Tr}[\varphi_{[E]}(0, t_0 + t)\varphi_{[E]}(0, t_0 + t)^{\dagger} + \varphi_{[O]}(0, t_0 + t)\varphi_{[O]}(0, t_0 + t)\varphi_{[O]}(0, t_0 + t)^{\dagger}] \\
 + t)^{\dagger}]\operatorname{Tr}[\varphi_{[E]}(0, t_0)\varphi_{[E]}(0, t_0)^{\dagger} + \varphi_{[O]}(0, t_0)\varphi_{[O]}(0, t_0)^{\dagger}] \rangle_{U,\eta,t_0}$
 - In case of finite momenta, $\varphi_{[E/O]}(t,t_0) \rightarrow e^{-i\vec{y}\cdot\vec{p}}\varphi_{[E/O]}(t_0+t,e^{i\vec{x}\cdot\vec{p}}\eta_{[E/O]}(t_0))$ $(\varphi_{[E/O]}(t,t_0)^{\dagger} \text{ unchanged})$
 - 1 set of noise vectors per gauge configuration
 - different implementations and dilution schemes are possible,

Chik Him Wong

- Outline
- Introduction
- Methodology
- Implementation
- Simulation Details
- Spectroscopy Analysis
- Fitting Strategies
- Preliminary Results
- Conclusion

Methodology - Implementation

• Test on $N_f = 12$ Fundamental SU(3) Model

- Known to be also close to Conformal Window
- Runs faster and more statistics available

Chik Him Wong

- Outline
- Introduction
- Methodology
- Implementation
- Simulation Details
- Spectroscopy Analysis
- Fitting Strategies
- Preliminary Results
- Conclusion

Methodology - Implementation

- Test on $N_f = 12$ Fundamental SU(3) Model
 - Known to be also close to Conformal Window
 - Runs faster and more statistics available

Chik Him Wong

- Outline
- Introduction
- Methodology
- Implementation
- Simulation Details
- Spectroscopy Analysis
- Fitting Strategies
- Preliminary Results
- Conclusion

Methodology - Implementation

• Test on $N_f = 12$ Fundamental SU(3) Model

- Known to be also close to Conformal Window
- Runs faster and more statistics available

Chik Him Wong

- Outline
- Introduction
- Methodology
- Implementation
- Simulation Details
- Spectroscopy Analysis
- Fitting Strategies
- Preliminary Results
- Conclusion

Methodology - Implementation

• Test on $N_f = 12$ Fundamental SU(3) Model

- Known to be also close to Conformal Window
- Runs faster and more statistics available

Comparison with KMI result [LHC: Fodor et al, KMI: Aoki et al (more details in Enrico Rinaldi's talk)]

Chik Him Wong

Outline

Introduction

Methodology

Implementation

Simulation Details

Spectroscopy Analysis

Fitting Strategies

Preliminary Results

Conclusion

Methodology - Simulation Details

• Action: Tree-level Symanzik-Improved gauge action with Staggered $N_f = 2$ Sextet SU(3) fermions

- RHMC algorithm with multiple time scales and Omelyan integrator
- Autocorrelations monitored by time histories of effective masses and correlators
- $\beta \equiv 6/g^2 = 3.20$ and 3.25, which is in the weak coupling regime
- Lattices available:($\sim 2000 4000$ Trajectories each)

		Т	m_q
	28	56	0.003, 0.004, 0.005, 0.006, 0.007, 0.008
	24	48	0.003, 0.004, 0.005, 0.006, 0.007, 0.008,
3.25	32	64	0.004, 0.005, 0.006, 0.007, 0.008
	28	56	0.003, 0.004, 0.005, 0.006, 0.007, 0.008
		48	0.003, 0.004, 0.005, 0.006, 0.007, 0.008

Chik Him Wong

- Outline
- Introduction
- Methodology
- Implementation
- Simulation Details
- Spectroscopy Analysis
- Fitting Strategies
- Preliminary Results
- Conclusion

- Action: Tree-level Symanzik-Improved gauge action with Staggered $N_f = 2$ Sextet SU(3) fermions
- RHMC algorithm with multiple time scales and Omelyan integrator
- Autocorrelations monitored by time histories of effective masses and correlators
- $\beta \equiv 6/g^2 = 3.20$ and 3.25, which is in the weak coupling regime
- Lattices available: ($\sim 2000 4000$ Trajectories each)

		T	m_q
	28	56	0.003, 0.004, 0.005, 0.006, 0.007, 0.008
	24	48	0.003, 0.004, 0.005, 0.006, 0.007, 0.008,
3.25	32	64	0.004, 0.005, 0.006, 0.007, 0.008
	28	56	0.003, 0.004, 0.005, 0.006, 0.007, 0.008
		48	0.003, 0.004, 0.005, 0.006, 0.007, 0.008

Chik Him Wong

- Outline
- Introduction
- Methodology
- Implementation
- Simulation Details
- Spectroscopy Analysis
- Fitting Strategies
- Preliminary Results
- Conclusion

- Action: Tree-level Symanzik-Improved gauge action with Staggered $N_f = 2$ Sextet SU(3) fermions
- RHMC algorithm with multiple time scales and Omelyan integrator
- Autocorrelations monitored by time histories of effective masses and correlators
- $\beta \equiv 6/g^2 = 3.20$ and 3.25, which is in the weak coupling regime
- Lattices available: ($\sim 2000 4000$ Trajectories each)

	L	T	
	28	56	0.003, 0.004, 0.005, 0.006, 0.007, 0.008
	24	48	0.003, 0.004, 0.005, 0.006, 0.007, 0.008,
3.25	32	64	0.004, 0.005, 0.006, 0.007, 0.008
	28	56	0.003, 0.004, 0.005, 0.006, 0.007, 0.008
	24	48	0.003, 0.004, 0.005, 0.006, 0.007, 0.008

Chik Him Wong

- Outline
- Introduction
- Methodology
- Implementation
- Simulation Details
- Spectroscopy Analysis
- Fitting Strategies
- Preliminary Results
- Conclusion

- Action: Tree-level Symanzik-Improved gauge action with Staggered $N_f = 2$ Sextet SU(3) fermions
- RHMC algorithm with multiple time scales and Omelyan integrator
- Autocorrelations monitored by time histories of effective masses and correlators
- $\beta \equiv 6/g^2 = 3.20$ and 3.25, which is in the weak coupling regime
- Lattices available: ($\sim 2000 4000$ Trajectories each)

		Τ	m_q
	28	56	0.003, 0.004, 0.005, 0.006, 0.007, 0.008
	24	48	0.003, 0.004, 0.005, 0.006, 0.007, 0.008,
3.25	32	64	0.004, 0.005, 0.006, 0.007, 0.008
	28	56	0.003, 0.004, 0.005, 0.006, 0.007, 0.008
		48	0.003, 0.004, 0.005, 0.006, 0.007, 0.008

Chik Him Wong

- Outline
- Introduction
- Methodology
- Implementation
- Simulation Details
- Spectroscopy Analysis
- Fitting Strategies
- Preliminary Results
- Conclusion

- Action: Tree-level Symanzik-Improved gauge action with Staggered $N_f = 2$ Sextet SU(3) fermions
- RHMC algorithm with multiple time scales and Omelyan integrator
- Autocorrelations monitored by time histories of effective masses and correlators
- $\beta \equiv 6/g^2 = 3.20$ and 3.25, which is in the weak coupling regime
- Lattices available: ($\sim 2000 4000$ Trajectories each)

β	L	T	m_q
3.20	48	96	0.003
	32	64	0.003, 0.004, 0.005, 0.006, 0.007, 0.008
	28	56	0.003, 0.004, 0.005, 0.006, 0.007, 0.008
	24	48	0.003, 0.004, 0.005, 0.006, 0.007, 0.008,
			0.009, 0.010, 0.012, 0.014
3.25	32	64	0.004, 0.005, 0.006, 0.007, 0.008
	28	56	0.003, 0.004, 0.005, 0.006, 0.007, 0.008
	24	48	0.003, 0.004, 0.005, 0.006, 0.007, 0.008

Chik Him Wong

- Outline
- Introduction
- Methodology
- Implementation
- Simulation Details

Spectroscopy Analysis

- Fitting Strategies
- Preliminary Results
- Conclusion

Spectroscopy Analysis

Observations of typical data:

- C(t), also correlator of a_0 , is quiet and can be fitted well with the following ansatz:
 - $C(t) = c_0(\cosh(m_{a_0}(T/2 t)) + (-)^t c_1 \cosh(m_{\pi_{\rm SC}}(T/2 t)))$

Chik Him Wong

- Outline
- Introduction
- Methodology
- Implementation
- Simulation Details

Spectroscopy Analysis

- Fitting Strategies
- Preliminary Results
- Conclusion

- Observations of typical data:
 - C(t), also correlator of a_0 , is quiet and can be fitted well with the following ansatz:
 - $C(t) = c_0(\cosh(m_{a_0}(T/2 t)) + (-)^t c_1 \cosh(m_{\pi_{\rm SC}}(T/2 t)))$

Chik Him Wong

- Outline
- Introduction
- Methodology
- Implementation
- Simulation Details
- Spectroscopy Analysis
- Fitting Strategies
- Preliminary Result
- Conclusion

Spectroscopy Analysis

• Observations of typical data:

• Difference between D(t) and $D(T/2), \tilde{D}(t)$ behaves exponential without detectable oscillation, with smaller exponent than C(t) $\tilde{D}(t) \equiv D(t) - D(T/2) = c_0(\cosh(m_D(T/2 - t)) - 1)$

10/14

Chik Him Wong

- Outline
- Introduction
- Methodology
- Implementation
- Simulation Details
- Spectroscopy Analysis
- Fitting Strategies
- Conclusion

Spectroscopy Analysis

- Observations of typical data:
 - Difference between D(t) and D(T/2), $\tilde{D}(t)$ behaves exponential without detectable oscillation, with smaller exponent than C(t) $\tilde{D}(t) \equiv D(t) - D(T/2) = c_0 (\cosh(m_D(T/2 - t)) - 1)$

10/14

Chik Him Wong

Outline

Introduction

Methodology

Implementation

Simulation Details

Spectroscopy Analysis

Fitting Strategies Preliminary Results

Conclusion

Spectroscopy Analysis

Observations of typical data:

• \Rightarrow Full subtracted correlator can be fitted well with the ansatz:

$$\begin{split} \tilde{D}(t) + C(t) = & c_0(\cosh(m_{f_0}(T/2 - t)) - 1) \\ & + c_1(\cosh(m_1(T/2 - t)) + (-)^t c_2 \cosh(m_{\eta_{\rm SC}}(T/2 - t))) \end{split}$$

where $m_{f_0} \approx m_D$, $m_1 \approx m_{a_0}$ and $m_{\eta_{SC}} \approx m_{\pi_{SC}}$ \Rightarrow Fitting $\tilde{D}(t)$ alone gives f_0 mass

$$\begin{split} & \text{Effective mass definition:} \\ & \underline{\tilde{D}(t) + 2\tilde{D}(t+1) + \tilde{D}(t+2)} \\ & \overline{\tilde{D}(t-1) + 2\tilde{D}(t) + \tilde{D}(t+1)} \\ & \equiv [\cosh(m_{\text{eff}}(T/2 - t)) + 2\cosh(m_{\text{eff}}(T/2 - (t+1))) \\ & + \cosh(m_{\text{eff}}(T/2 - (t+2))) - 4] \\ & /[\cosh(m_{\text{eff}}(T/2 - (t-1))) + 2\cosh(m_{\text{eff}}(T/2 - t)) \\ & + \cosh(m_{\text{eff}}(T/2 - (t+1))) - 4] \end{split}$$

Chik Him Wong

Outline

Introduction

Methodology

Implementation

Simulation Details

Spectroscopy Analysis

Fitting Strategies Preliminary Results

Conclusion

Spectroscopy Analysis

Observations of typical data:

• \Rightarrow Full subtracted correlator can be fitted well with the ansatz:

$$\begin{split} \tilde{D}(t) + C(t) = & c_0(\cosh(m_{f_0}(T/2 - t)) - 1) \\ & + c_1(\cosh(m_1(T/2 - t)) + (-)^t c_2 \cosh(m_{\eta_{\rm SC}}(T/2 - t))), \end{split}$$

where $m_{f_0} \approx m_D$, $m_1 \approx m_{a_0}$ and $m_{\eta_{SC}} \approx m_{\pi_{SC}}$ \Rightarrow Fitting $\tilde{D}(t)$ alone gives f_0 mass fective mass definition: $\frac{\tilde{D}(t) + 2\tilde{D}(t+1) + \tilde{D}(t+2)}{\tilde{D}(t-1) + 2\tilde{D}(t) + \tilde{D}(t+1)}$ $\equiv [\cosh(m_{\text{eff}}(T/2-t)) + 2\cosh(m_{\text{eff}}(T/2-(t+1))) + \cosh(m_{\text{eff}}(T/2-(t+2))) - 4]$ $/[\cosh(m_{\text{eff}}(T/2-(t-1))) + 2\cosh(m_{\text{eff}}(T/2-t)) + \cosh(m_{\text{eff}}(T/2-(t+1))) - 4]$

Chik Him Wong

Outline

Introduction

Methodology

Implementation

Simulation Details

Spectroscopy Analysis

Fitting Strategies Preliminary Results

Conclusion

Spectroscopy Analysis

Observations of typical data:

• \Rightarrow Full subtracted correlator can be fitted well with the ansatz:

$$\begin{split} \tilde{D}(t) + C(t) = & c_0(\cosh(m_{f_0}(T/2 - t)) - 1) \\ & + c_1(\cosh(m_1(T/2 - t)) + (-)^t c_2 \cosh(m_{\eta_{\rm SC}}(T/2 - t))), \end{split}$$

where $m_{f_0} \approx m_D$, $m_1 \approx m_{a_0}$ and $m_{\eta_{SC}} \approx m_{\pi_{SC}}$ • \Rightarrow Fitting $\tilde{D}(t)$ alone gives f_0 mass

$$\begin{split} & \widetilde{Effective mass definition:} \\ & \underbrace{\tilde{D}(t) + 2\tilde{D}(t+1) + \tilde{D}(t+2)}_{\tilde{D}(t-1) + 2\tilde{D}(t) + \tilde{D}(t+1)} \\ & \equiv [\cosh(m_{\rm eff}(T/2-t)) + 2\cosh(m_{\rm eff}(T/2-(t+1))) \\ & + \cosh(m_{\rm eff}(T/2-(t+2))) - 4] \\ & / [\cosh(m_{\rm eff}(T/2-(t-1))) + 2\cosh(m_{\rm eff}(T/2-t)) \\ & + \cosh(m_{\rm eff}(T/2-(t+1))) - 4] \end{split}$$

Chik Him Wong

Outline

Introduction

Methodology

Implementation

Simulation Details

Spectroscopy Analysis

Fitting Strategies Preliminary Results

Conclusion

Spectroscopy Analysis

Observations of typical data:

• \Rightarrow Full subtracted correlator can be fitted well with the ansatz:

$$\begin{split} \tilde{D}(t) + C(t) = & c_0(\cosh(m_{f_0}(T/2 - t)) - 1) \\ & + c_1(\cosh(m_1(T/2 - t)) + (-)^t c_2 \cosh(m_{\eta_{\rm SC}}(T/2 - t))), \end{split}$$

where $m_{f_0} \approx m_D$, $m_1 \approx m_{a_0}$ and $m_{\eta_{SC}} \approx m_{\pi_{SC}}$ • \Rightarrow Fitting $\tilde{D}(t)$ alone gives f_0 mass

• Effective mass definition: $\frac{\tilde{D}(t) + 2\tilde{D}(t+1) + \tilde{D}(t+2)}{\tilde{D}(t-1) + 2\tilde{D}(t) + \tilde{D}(t+1)}$ $\equiv [\cosh(m_{\text{eff}}(T/2-t)) + 2\cosh(m_{\text{eff}}(T/2-(t+1))) + \cosh(m_{\text{eff}}(T/2-(t+2))) - 4]$ $/[\cosh(m_{\text{eff}}(T/2-(t-1))) + 2\cosh(m_{\text{eff}}(T/2-t)) + \cosh(m_{\text{eff}}(T/2-(t+1))) - 4]$

Chik Him Wong

Outline

Introduction

Methodology

Implementation

Simulation Details

Spectroscopy Analysis

Fitting Strategies Preliminary Results

Conclusion

Spectroscopy Analysis

• Observations of typical data:

• \Rightarrow Full subtracted correlator can be fitted well with the ansatz:

$$\begin{split} \tilde{D}(t) + C(t) = & c_0(\cosh(m_{f_0}(T/2 - t)) - 1) \\ & + c_1(\cosh(m_1(T/2 - t)) + (-)^t c_2 \cosh(m_{\eta_{\rm SC}}(T/2 - t))), \end{split}$$

where $m_{f_0} \approx m_D$, $m_1 \approx m_{a_0}$ and $m_{\eta_{SC}} \approx m_{\pi_{SC}}$ • \Rightarrow Fitting $\tilde{D}(t)$ alone gives f_0 mass

• Effective mass definition: $\frac{\tilde{D}(t) + 2\tilde{D}(t+1) + \tilde{D}(t+2)}{\tilde{D}(t-1) + 2\tilde{D}(t) + \tilde{D}(t+1)}$ $\equiv [\cosh(m_{\text{eff}}(T/2-t)) + 2\cosh(m_{\text{eff}}(T/2-(t+1))) + \cosh(m_{\text{eff}}(T/2-(t+2))) - 4]$ $/[\cosh(m_{\text{eff}}(T/2-(t-1))) + 2\cosh(m_{\text{eff}}(T/2-t)) + \cosh(m_{\text{eff}}(T/2-(t+1))) - 4]$

Chik Him Wong

- Outline
- Introduction
- Methodology
- Implementation
- Simulation Details
- Spectroscopy Analysis
- Fitting Strategies Preliminary Results
- Conclusion

- Thermalization monitored by stabilility of fitted masses along trajectory
 - Autocorrelation minimized by measuring configurations far apart
 - Principle Component Analysis
 - Very small eigenvalues of covariance matrix discarded occasionally
 - eigenvalues with too large relative error also discarded

Chik Him Wong

- Outline
- Introduction
- Methodology
- Implementation
- Simulation Details
- Spectroscopy Analysis
- Fitting Strategies Preliminary Results
- Conclusion

- Thermalization monitored by stabilility of fitted masses along trajectory
- Autocorrelation minimized by measuring configurations far apart
 - Principle Component Analysis
 - Very small eigenvalues of covariance matrix discarded occasionally
 - eigenvalues with too large relative error also discarded

Chik Him Wong

- Outline
- Introduction
- Methodology
- Implementation
- Simulation Details
- Spectroscopy Analysis
- Fitting Strategies Preliminary Results
- Conclusion

- Thermalization monitored by stabilility of fitted masses along trajectory
- Autocorrelation minimized by measuring configurations far apart
- Principle Component Analysis
 - Very small eigenvalues of covariance matrix discarded occasionally
 - eigenvalues with too large relative error also discarded

Chik Him Wong

- Outline
- Introduction
- Methodology
- Implementation
- Simulation Details
- Spectroscopy Analysis
- Fitting Strategies Preliminary Results
- Conclusion

- Thermalization monitored by stabilility of fitted masses along trajectory
- Autocorrelation minimized by measuring configurations far apart
- Principle Component Analysis
 - Very small eigenvalues of covariance matrix discarded occasionally
 - eigenvalues with too large relative error also discarded

Chik Him Wong

- Outline
- Introduction
- Methodology
- Implementation
- Simulation Details
- Spectroscopy Analysis
- Fitting Strategies Preliminary Results
- Conclusion

- Thermalization monitored by stabilility of fitted masses along trajectory
- Autocorrelation minimized by measuring configurations far apart
- Principle Component Analysis
 - Very small eigenvalues of covariance matrix discarded occasionally
 - eigenvalues with too large relative error also discarded

Chik Him Wong

Outline

Introduction

Methodology

Implementation

Simulation Details

Spectroscopy Analysis

Fitting Strategies

Preliminary Results

Conclusion

Spectroscopy Analysis

- Finite momentum energy consistent with expected dispersion. E.g. $\beta = 0.006, m_{f_0} = 0.119(18),$
 - $[E_{f_0}(\vec{p} = (0, 0, 1))]^2 m_{f_0}^2 4\sin^2(\pi/L) = 0.019(17)$
- m_{f_0} can be as light as 250 750GeV
- Radiative corrections due to top quarks can turn it into a Higgs Impostor (R. Foadi, M Frandsen, F Sannino hep-ph: 1211.1083)

Chik Him Wong

Outline

Introduction

Methodology

Implementation

Simulation Details

Spectroscopy Analysis

Fitting Strategies

Preliminary Results

Conclusion

Spectroscopy Analysis

- Finite momentum energy consistent with expected dispersion. E.g. $\beta = 0.006, m_{f_0} = 0.119(18),$
- $[E_{f_0}(\vec{p} = (0,0,1))]^2 m_{f_0}^2 4\sin^2(\pi/L) = 0.019(17)$ m_{f_0} can be as light as 250 750 GeV
- Radiative corrections due to top quarks can turn it into a Higgs Impostor (R. Foadi, M Frandsen, F Sannino hep-ph: 1211.1083)

Chik Him Wong

Outline

Introduction

Methodology

Implementation

Simulation Details

Spectroscopy Analysis

Fitting Strategies

Preliminary Results

Conclusion

Spectroscopy Analysis

- Finite momentum energy consistent with expected dispersion. E.g. $\beta = 0.006, m_{f_0} = 0.119(18),$
 - $[E_{f_0}(\vec{p} = (0,0,1))]^2 m_{f_0}^2 4\sin^2(\pi/L) = 0.019(17)$
- m_{f_0} can be as light as 250 750GeV
- Radiative corrections due to top quarks can turn it into a Higgs Impostor (R. Foadi, M Frandsen, F Sannino hep-ph: 1211.1083)

Chik Him Wong

Outline

Introduction

Methodology

Implementation

Simulation Details

Spectroscopy Analysis

Fitting Strategies

Preliminary Results

Conclusion

Spectroscopy Analysis

- Finite momentum energy consistent with expected dispersion. E.g. $\beta = 0.006, m_{f_0} = 0.119(18),$
- $[E_{f_0}(\vec{p} = (0,0,1))]^2 m_{f_0}^2 4\sin^2(\pi/L) = 0.019(17)$
- m_{f_0} can be as light as 250 750 GeV
- Radiative corrections due to top quarks can turn it into a Higgs Impostor (R. Foadi, M Frandsen, F Sannino hep-ph: 1211.1083)

Chik Him Wong

- Outline
- Introduction
- Methodology
- Implementation
- Simulation Details
- Spectroscopy Analysis
- Fitting Strategies
- r tenninary Kesu
- Conclusion

- Preliminary results have shown the possibility for the ground state of 0^{++} channel in $N_f = 2$ Sextet SU(3) model to serve as a Higgs Impostor
- Future Plans
 - Investigate Finite Volume Effects on larger lattices
 - Investigate glueball and multi-hadron contributions
 - Investigate possible relation with dilatons
 - Investigate behavior in other weaker couplings
 - Improve efficiency by optimizing the choice of dilution schemes
 - Compare behavior with other models (e.g. $N_f = 8$ Fundamental SU(3))

Chik Him Wong

- Outline
- Introduction
- Methodology
- Implementation
- Simulation Details
- Spectroscopy Analysis
- Fitting Strategies
- Preliminary Result
- Conclusion

Conclusion

• Preliminary results have shown the possibility for the ground state of 0^{++} channel in $N_f = 2$ Sextet SU(3) model to serve as a Higgs Impostor

Future Plans

- Investigate Finite Volume Effects on larger lattices
- Investigate glueball and multi-hadron contributions
- Investigate possible relation with dilatons
- Investigate behavior in other weaker couplings
- Improve efficiency by optimizing the choice of dilution schemes
- Compare behavior with other models (e.g. $N_f = 8$ Fundamental SU(3))

Chik Him Wong

- Outline
- Introduction
- Methodology
- Implementation
- Simulation Details
- Spectroscopy Analysis
- Fitting Strategies
- Conclusion

- Preliminary results have shown the possibility for the ground state of 0^{++} channel in $N_f = 2$ Sextet SU(3) model to serve as a Higgs Impostor
- Future Plans
 - Investigate Finite Volume Effects on larger lattices
 - Investigate glueball and multi-hadron contributions
 - Investigate possible relation with dilatons
 - Investigate behavior in other weaker couplings
 - Improve efficiency by optimizing the choice of dilution schemes
 - Compare behavior with other models (e.g. $N_f = 8$ Fundamental SU(3))

Chik Him Wong

- Outline
- Introduction
- Methodology
- Implementation
- Simulation Details
- Spectroscopy Analysis
- Fitting Strategies
- Conclusion

- Preliminary results have shown the possibility for the ground state of 0^{++} channel in $N_f = 2$ Sextet SU(3) model to serve as a Higgs Impostor
- Future Plans
 - Investigate Finite Volume Effects on larger lattices
 - Investigate glueball and multi-hadron contributions
 - Investigate possible relation with dilatons
 - Investigate behavior in other weaker couplings
 - Improve efficiency by optimizing the choice of dilution schemes
 - Compare behavior with other models (e.g. $N_f = 8$ Fundamental SU(3))

Chik Him Wong

- Outline
- Introduction
- Methodology
- Implementation
- Simulation Details
- Spectroscopy Analysis
- Fitting Strategies
- Conclusion

- Preliminary results have shown the possibility for the ground state of 0^{++} channel in $N_f = 2$ Sextet SU(3) model to serve as a Higgs Impostor
- Future Plans
 - Investigate Finite Volume Effects on larger lattices
 - Investigate glueball and multi-hadron contributions
 - Investigate possible relation with dilatons
 - Investigate behavior in other weaker couplings
 - Improve efficiency by optimizing the choice of dilution schemes
 - Compare behavior with other models (e.g. $N_f = 8$ Fundamental SU(3))

Chik Him Wong

- Outline
- Introduction
- Methodology
- Implementation
- Simulation Details
- Spectroscopy Analysis
- Fitting Strategies
- Fremminary Resul
- Conclusion

- Preliminary results have shown the possibility for the ground state of 0^{++} channel in $N_f = 2$ Sextet SU(3) model to serve as a Higgs Impostor
- Future Plans
 - Investigate Finite Volume Effects on larger lattices
 - Investigate glueball and multi-hadron contributions
 - Investigate possible relation with dilatons
 - Investigate behavior in other weaker couplings
 - Improve efficiency by optimizing the choice of dilution schemes
 - Compare behavior with other models (e.g. $N_f = 8$ Fundamental SU(3))

Chik Him Wong

- Outline
- Introduction
- Methodology
- Implementation
- Simulation Details
- Spectroscopy Analysis
- Fitting Strategies
- Conclusion

- Preliminary results have shown the possibility for the ground state of 0^{++} channel in $N_f = 2$ Sextet SU(3) model to serve as a Higgs Impostor
- Future Plans
 - Investigate Finite Volume Effects on larger lattices
 - Investigate glueball and multi-hadron contributions
 - Investigate possible relation with dilatons
 - Investigate behavior in other weaker couplings
 - Improve efficiency by optimizing the choice of dilution schemes
 - Compare behavior with other models (e.g. $N_f = 8$ Fundamental SU(3))

Chik Him Wong

- Outline
- Introduction
- Methodology
- Implementation
- Simulation Details
- Spectroscopy Analysis
- Fitting Strategies
- Fremminary Resul
- Conclusion

- Preliminary results have shown the possibility for the ground state of 0^{++} channel in $N_f = 2$ Sextet SU(3) model to serve as a Higgs Impostor
- Future Plans
 - Investigate Finite Volume Effects on larger lattices
 - Investigate glueball and multi-hadron contributions
 - Investigate possible relation with dilatons
 - Investigate behavior in other weaker couplings
 - Improve efficiency by optimizing the choice of dilution schemes
 - Compare behavior with other models (e.g. $N_f = 8$ Fundamental SU(3))