Method		Conclusion

Multi-boson spectrum of the SU(2)-Higgs model arXiv:1307.1492 [hep-lat]

Mark Wurtz, Randy Lewis

York University

Jul 29, 2013

< 🗇 🕨

York University

Mark Wurtz, Randy Lewis

Introduction	Method		Conclusion

Introduction

- The confinement region contains glueballs and QCD-like bound states of the scalar fields.
- The Higgs region contains the Higgs boson and three degenerate W bosons, which agrees with perturbation theory.
- We want to study the Higgs region using lattice simulations with parameters tuned to match the standard model.

Introduction	Method		Conclusion

Introduction

- We want to study the entire $I(J^P)$ spectrum (for I = 0, 1) on the lattice.
- Our parameters (β,κ,λ) are tuned to match experimental data: $m_H = 125$ GeV, $m_W = 80.4$ GeV, $\frac{g^2}{4\pi} \approx \frac{\alpha}{\sin^2 \theta_W} \approx 0.04$
- Our lattice study found more than a dozen energy levels.

Introduction	Method		Conclusion

Particles versus Fields

- The SU(2)-Higgs Lagrangian contains gauge dependent scalar φ(x) and gauge U_μ(x) fields.
- Physical particle states are found from gauge-invariant operators that are composites of the fields.
- Higgs boson $0(0^+)$ couples to $\text{Tr}\left(\phi^{\dagger}(x)\phi(x)\right)$
- W boson 1(1⁻) couples to Tr $(-i\sigma^a\phi^\dagger(x)U_\mu(x)\phi(x+\hat{\mu}))$
- In principle, particle states couple to any operator with the correct quantum numbers.

Method		Conclusion

Lattice Irreducible Representations, Λ

 Angular momentum on the lattice corresponds to the irreps Λ of the octahedral group of rotations.

• Higgs, Tr
$$(\phi^{\dagger}(x)\phi(x))$$
: $I(\Lambda^{P}) = 0(A_{1}^{+})$

• W, Tr $\left(-i\sigma^{a}\phi^{\dagger}(x)U_{\mu}(x)\phi(x+\hat{\mu})\right)$: $I(\Lambda^{P}) = 1(T_{1}^{-})$

Method		Conclusion

Gauge-Invariant Operators

- Gauge invariant link, Wilson loop and Polyakov loop operators with zero momentum were used to extract the spectrum.
- Intricate operator shapes were used to access all *I*(Λ^P) quantum numbers.

Mark Wurtz, Randy Lewis

Gauge-Invariant Operators

- Gauge invariant link, Wilson loop and Polyakov loop operators with zero momentum were used to extract the spectrum.
- Intricate operator shapes were used to access all *I*(Λ^P) quantum numbers.

Operator Smearing

- Stout link and scalar field smearing were used to improve the operators, and generate a basis for a variational analysis.
- Number of stout link and scalar smearing iterations:
 - 0, 5, 10, 25, 50, 100, 150, and 200.

Mark Wurtz, Randy Lewis

York University

Method		Conclusion

Variational Analysis

 The low-lying energy spectrum is extracted from correlation matrices of vacuum subtracted gauge-invariant (Hermitian) operators.

$$egin{aligned} \mathcal{C}_{ij}(t) &= \langle \mathcal{O}_i(t) \mathcal{O}_j(0)
angle &= \sum_n \langle 0 | \ \mathcal{O}_i \ | n
angle \langle n | \ \mathcal{O}_j \ | 0
angle \exp\left(-E_n t
ight) \ &= \sum_n a_i^n a_j^n \exp\left(-E_n t
ight) \end{aligned}$$

• The variational method iteratively projects out the lightest energies from the correlation matrix $C_{ij}(t)$.

$$C_n(t) = z_n^i C_{ij}(t) z_n^j = A_n \exp\left(-E_n t\right)$$

<ロ> (日) (日) (日) (日) (日)

York University

Mark Wurtz, Randy Lewis

Method	Results 1	Results 2	Conclusion

• Lattice parameters: $20^3 \times 40$, $\beta = 8$ (physical gauge coupling), $\kappa = 0.131$, $\lambda = 0.0033 \Rightarrow m_H = 122 \pm 1$ GeV, $m_W = 80.4 \pm 0.2$ GeV

Mark Wurtz, Randy Lewis

York University

Method	Results 1	Results 2	Conclusion

• Expected quantum numbers for two stationary W bosons: $0(0^+)$, $0(2^+)$ and $1(1^+) \Longrightarrow 0(A_1^+)$, $0(E^+)$, $0(T_2^+)$ and $1(T_1^+)$

Method	Results 1	Results 2	Conclusion

• Expected quantum numbers for stationary Higgs and W boson: Same as a single W boson: $1(1^-) \Longrightarrow 1(T_1^-)$

Method	Results 1	Results 2	Conclusion

Expected quantum numbers for three stationary W bosons: $0(0^{-}), 1(1^{-}), 1(2^{-}), 1(3^{-}) \Longrightarrow 0(A_{1}^{-}), 1(T_{1}^{-}), 1(E^{-}), 1(T_{2}^{-}), 1(A_{2}^{-})$

Method	Results 1	Results 2	Conclusion

 Expected quantum numbers for two stationary W bosons and a Higgs boson: Same as two W bosons

York University

Mark Wurtz, Randy Lewis

Method	Results 1	Results 2	Conclusion

 Expected quantum numbers for two moving W bosons with total momentum zero and the minimal back to back internal momentum: All I(Λ^P) channels!

York University

Mark Wurtz, Randy Lewis

Introduction Method Results 1 Results 2 Conclusion

Spectrum from a Larger ($24^3 \times 48$) Lattice

Two-W states with minimal internal momentum now appear at 0.65

Higgs-W states with minimal internal momentum at 0.72

Mark Wurtz, Randy Lewis

Method	Results 1	Conclusion

Successes for Part 1

- Identified the Higgs-W multi-particle spectrum.
- Two-W, three-W, Higgs-W and Higgs-W-W states with no internal momentum appeared in all of the expected channels.

Mark Wurtz, Randy Lewis Multi-boson spectrum of the SU(2)-Higgs model

Method	Results 1	Conclusion

Successes for Part 1

- Identified the Higgs-W multi-particle spectrum.
- Two-W, three-W, Higgs-W and Higgs-W-W states with no internal momentum appeared in all of the expected channels.

Remaining for Part 2

- Find the two-Higgs state, which was missing in Part 1.
- Explain missing irreps for two-particle states with equal and opposite internal momentum.

Method		Results 2	Conclusion
Solution:	Construct Operato	"Two"-Particle ors	
1	~ ``		

$$H(\vec{p}) = \sum_{\vec{x}} \frac{1}{2} \operatorname{Tr} \left\{ \phi^{\dagger}(x)\phi(x) \right\} \exp\left\{ i\vec{p} \cdot \vec{x} \right\}$$
$$W^{a}_{\mu}(\vec{p}) = \sum_{\vec{x}} \frac{1}{2} \operatorname{Tr} \left\{ -i\sigma^{a}\phi^{\dagger}(x)U_{\mu}(x)\phi(x+\hat{\mu}) \right\} \exp\left\{ i\vec{p} \cdot \left(\vec{x} + \frac{1}{2}\hat{\mu}\right) \right\}$$

Multiply operators of definite momentum:

$$egin{aligned} & H(ec{p})H(-ec{p}) &, \ I=0 \ & H(ec{p})W^a_\mu(-ec{p}) &, \ I=1 \ & W^a_\mu(ec{p})W^a_
u(-ec{p}) &, \ I=0 \ & \epsilon^{abc}W^b_\mu(ec{p})W^c_
u(-ec{p}) &, \ I=1 \end{aligned}$$

∃ → < ∃</p>

Mark Wurtz, Randy Lewis

York University

< 🗗

York University

Higgs-Higgs and Higgs-W Spectrum

Two-Higgs states are now found.

Mark Wurtz, Randy Lewis

	Method	Results 1	Results 2	Conclusion		
		_				
W-W Spectrum						
	-	0	• ·			
	1.1	0	$\mathbf{I} = \mathbf{I}$			
	0.9 - + + +	Ţ Ţ				
	~ 0.8 - 	╪ _┰ ┸┰┰ ────	• • • • • • • • • • • • • • • •			
	.tim 0.7		-			
			-			
			- W W			
	0.2		-			
	0.2		-			
	$A_1^+ A_2^+ E^+ T_1^+ T_2^+$	$A_1^- A_2^- E^- T_1^- T_2^- A_1^+ A_2^+ E^+ T_2^-$	T_1^+ T_2^+ $A_1^ A_2^ E^ T_1^ T_2^-$			

• The direction of the internal momentum of multi-particle states affects the allowed lattice irreps.

・ロト ・回ト ・ヨト ・ヨ

York University

Mark Wurtz, Randy Lewis

Introduction N	lethod	Results 1	Results 2	Conclusion

Conclusion

- The entire SU(2)-Higgs energy spectrum has been studied with all parameters tuned to match the standard model.
- Multi-boson spectrum was observed and is consistent with collections of weakly interacting Higgs and W bosons.