

Progress in Gauge-Higgs Unification on the Lattice (I)

Kyoko Yoneyama (Wuppertal University)

in collaboration with Francesco Knechtli(Wuppertal University) Nikos Irges(National Technical University of Athens) Peter Dziennik(Wuppertal University)

LATTICE2013, July 29th

Introduction

Gauge Higgs Unification Model

- 5-dimensional gauge theory
- The Higgs fields is identified with some of the extra dimensional components of the gauge fields.
- Higgs mass and potential are finite.(Hierarchy problem is solved) [Gersdorff, Irges, Quiros 2002] [Antoniadis, Benakli and Quiros 2001] [Cheng, Matchev and Schmaltz 20002][Irges and Knechtli 2006, 2007]
- Higgs potential can break gauge symmetry.(Origin of Spontaneous Symmetry Breaking SSB) [Hosotani 1983]

Lattice Gauge theory

- You can study non-perturbative region by Monte Carlo and Mean-Field.
- You can take gauge-invariant ultra-violet cut off $(\Lambda = 1/a)$.

Is there SSB without fermion in non-perturbative region ?

- Torus boundary condition ; No, there is no SSB [Irges and Knechtli 2009]
- Orbifold boundary conditions ; Yes! there is SSB [Irges, Knechtli and Yoneyama 2012]
 - \longrightarrow I will talk about dimensional reduction and continuum limit

The Orbifold Boundary Conditions

Mean-Field Expansion

[Drouffe and Zuber, 1983]

The partition function of SU(N) gauge theory on lattice

$$Z = \int DU \ e^{S_G[U]}$$

$$Z = \int DV \int DH e^{-S_{eff}[V,H]}$$

$$S_{eff} = S_G[V] + u(H) + (1/N) \operatorname{Re} \operatorname{tr}\{VH\}$$

$$e^{-u(H)} = \int DU \ e^{-(1/N) \operatorname{Re} \operatorname{tr}\{UH\}}$$

$$S_{eff} = S_G[V] + u(H) + (1/N) \operatorname{Re} \operatorname{tr}\{UH\}$$

Saddle point solution (background)

$$\bar{V}(n,M) = -\frac{\partial S_{eff}}{\partial H(n,M)}\Big|_{\bar{H}(n,M)}, \quad \bar{H}(n,M) = -\frac{\partial S_{eff}}{\partial V(n,M)}\Big|_{\bar{V}(n,M)}$$
$$\bar{V} \to \bar{v}_0 \mathbf{1} \qquad \bar{H} \to \bar{h}_0 \mathbf{1} \qquad S_{eff}[\bar{V},\bar{H}] = \text{minimal}$$

Expansion in Gaussian fluctuations

$$H = \bar{H} + h \quad V = \bar{V} + v$$

covariant gauge fixing on v [Rühl, 1982] $\gamma/1$

Five dimensional SU(2) Lattice Gauge Theory for Orbifold

 $T \times L^3 \times N_5$ lattice, SU(2) gauge theory on orbifold boundary conditions

Wilson plaquette action

$$S_W[U_1, U_2] = S_{W1}[U_1] + S_{W2}[U_1, U_2]$$

Where

$$U_{1} \in U(1), \ U_{2} \in SU(2)$$

$$S_{W1}[U_{1}] = \frac{1}{4N} \frac{\beta}{\gamma} \sum_{n_{\mu}} \sum_{n_{5}=0, N_{5}-1} \sum_{\nu, \rho} \operatorname{tr}\{1 - U(n, \nu, \rho)\} \quad \text{boundary}$$

$$S_{W2}[U_{2}, U_{1}] = \frac{1}{2N} \frac{\beta}{\gamma} \sum_{n_{\mu}} \sum_{n_{5}=1}^{N_{5}-1} \sum_{\nu, \rho} \operatorname{tr}\{1 - U(n, \nu, \rho)\} + \frac{\gamma \cdot \beta}{N} \sum_{n_{\mu}} \sum_{n_{5}=0}^{N_{5}-1} \sum_{\nu} \operatorname{tr}\{1 - U(n, \nu, 5)\} \quad \text{bulk}$$

 $\beta = \frac{2Na_4}{q_5^2}, \quad \gamma = \frac{a_4}{a_5}$ (tree level)

gauge trans formation on a boundary link $U(n, M) \rightarrow \Omega^{(U(1))}(n)U(n, M)\Omega^{(U(1))\dagger}(n + \hat{M})$ on the bulk link $U(n, M) \rightarrow \Omega^{(SU(2))}(n)U(n, M)\Omega^{(SU(2))\dagger}(n + \hat{M})$ on a link whose one end is in the bulk and the other touches the boundary $U(n, M) \rightarrow \Omega^{(U(1))}(n)U(n, M)\Omega^{(SU(2))\dagger}(n + \hat{M})$ 4/12

The Mean-Field Background

The action is expressed with $N \times N$ complex matrices V and Lagrange multipliers H.

 $S_W[U_1, U_2] \rightarrow S_W(V) + u(H) + (1/N) \operatorname{Re} \operatorname{tr}\{VH\}$

Then, we can get mean-field background from these minimization equations.

The parametrization of the field
In the bulk

$$V(m, M) = v_0(n, M) + i \sum_{A=1}^{3} v_A(n, M) \sigma^A$$

 $H(m, M) = h_0(n, M) - i \sum_{A=1}^{3} h_A(n, M) \sigma^A$
on the boundaries

$$V(n,M) = v_0(n,M) + iv_3(n,M)\sigma^3$$
$$H(n,M) = h_0(n,M) - ih_3(n,M)\sigma^3$$

$$\bar{V}(n,M) = -\frac{\partial S_{eff}}{\partial H(n,M)}\Big|_{\bar{H}(n,M)}, \quad \bar{H}(n,M) = -\frac{\partial S_{eff}}{\partial V(n,M)}\Big|_{\bar{V}(n,M)}$$

parametrization of the mean-field background (saddle point solution)

for 4-dimensional links $(n_5 = 0, 1, ..., N_5)$ $\bar{H}(n, \mu) = \bar{h}_0(n_5), \quad \bar{V}(n, \mu) = \bar{v}_0(n_5)$ for extra-dimensional links $(n_5 = 0, 1, ..., N_5 - 1)$ $\bar{H}(n, 5) = \bar{h}_0(n_5 + 1/2), \quad \bar{V}(n, 5) = \bar{v}_0(n_5 + 1/2)$

The mean-field back ground depend on the position of 5th dimension.

The Phase Diagram

Mean-Field Expansion

Mean-field expansion of the expectation value of the observables

$$\begin{split} \mathcal{O}[V] &= \mathcal{O}[\overline{V}] + \frac{\delta \mathcal{O}}{\delta V} \bigg|_{\overline{V}} v^{+} \frac{1}{2} \frac{\delta^{2} \mathcal{O}}{\delta V^{2}} \bigg|_{\overline{V}} v^{2} + \dots \\ \langle \mathcal{O} \rangle &= \frac{1}{Z} \int Dv \int Dh \left(\mathcal{O}[\overline{V}] + \frac{1}{2} \frac{\delta^{2} \mathcal{O}}{\delta V^{2}} \bigg|_{\overline{V}} v^{2} \right) e^{-S_{eff}[\overline{V},\overline{H}] + S^{(2)}[v,h]} \\ &= \mathcal{O}[\overline{V}] + \frac{1}{2} \frac{\delta^{2} \mathcal{O}}{\delta V^{2}} \bigg|_{\overline{V}} \frac{1}{Z} \int Dv \int Dh \ v^{2} e^{-S_{eff}[\overline{V},\overline{H}] + S^{(2)}[v,h]} \\ &= \mathcal{O}[\overline{V}] + \frac{1}{2} \operatorname{tr} \left\{ \frac{\delta^{2} \mathcal{O}}{\delta V^{2}} \bigg|_{\overline{V}} K^{-1} \right\} \\ &= \mathcal{O}[\overline{V}] + \frac{1}{2} \operatorname{tr} \left\{ \frac{\delta^{2} \mathcal{O}}{\delta V^{2}} \bigg|_{\overline{V}} K^{-1} \right\} \\ &= \frac{\delta^{2} S_{eff}}{\delta V \delta H} \bigg|_{\overline{V},\overline{H}} vh = v_{i} K_{ij}^{(vh)} h_{j} = v^{T} K^{(vh)} h_{j} \\ &= v^{T} K^{(vh)} h_{j} = v^{T} K^{(vh)} h_{j} \\ &= v^{T} K^{(vh)} h_{j} = v^{T} K^{(vh)} h_{j} \\ &= v^{T} K^{(vh)} h$$

where the lattice propagator

$$K = -K^{(vh)}K^{(hh)^{-1}}K^{(vh)} + K^{(vv)}$$

 $\left. \frac{\delta^2 S_{eff}}{\delta V^2} \right|_{\bar{V},\bar{H}} v^2 = v_i K_{ij}^{(vv)} v_j = v^T K^{(hh)} v$

1st order of the expectation value of the observable

$$\langle \mathcal{O} \rangle = \mathcal{O}[\overline{V}] + \frac{1}{2} \operatorname{tr} \left\{ \frac{\delta^2 \mathcal{O}}{\delta V^2} \bigg|_{\overline{V}} K^{-1} \right\}$$

Observables

the expectation value of the observable

Higgs mass

Dimensional Reduction

Conditions for the dimensional reduction to 4-dimensions

1) The fit to $V(r) = const. + b \frac{e^{-m_z r}}{r}$ is possible with $m_Z \neq 0$.

This ensures that there is SSB, signaled by the presence of the massive U(1) gauge boson. Otherwise the gauge boson is massless and only a Coulomb fit is possible.

2) The quantities $M_H = a_4 m_H$ and $M_Z = a_4 m_Z < 1$.

The observables are not dominated by the cut off.

3) $F_1 = m_H R < 1$ and $\rho_{MZ} = m_H / m_Z > 1$.

The Higgs and the Z are lighter than 1/R and the Higgs is heavier than the Z. We will target the value $\rho_{HZ} = 1.38$

The Line of Constant Physics

We have 3 observables: $M_H(\beta, \gamma, N_5), M_Z(\beta, \gamma, N_5)$ and $M_{Z'}(\beta, \gamma, N_5)$

Prediction of the Z' mass $N_5 \to \infty$ (i.e. $a_4 = 0$) on the LCP

$$\rho_{HZ'} = \frac{m_H}{m_{Z'}} = 0.1272$$
 $m_{Z'} = \frac{m_H}{\rho_{HZ'}} = 126/0.1272 = 989 \,[\text{GeV}]$
Where χ^2 per degree of freedom is $0.025/3$

Summary

Setup

We studied 5-dimensional SU(2) pure gauge theory (Gauge Higgs Unification) on Euclidean lattice whose 5th dimension is orbifolded.

Result from mean-field expansion

We found there is SSB for orbifold boundary condition. This result is different from perturbative studies but support the Monte Carlo simulation [Irges and Knechtli 2007]. It means SSB occur even if there are no fermions and the Higgs mass can be large enough in the non-perturbative region. Also, it is possible to construct LCP's and predict the existence of a Z' state with a mass around 1 TeV by taking the continuum limit for small γ .

Monte Carlo Simulation

Although the mean-field expansion works better in higher dimensions, there is still uncertainty of the convergence of the mean-field expansion. Therefore, we have to confirm the mean-field result by Monte Carlo simulation. Now, we are working on Monte Carlo Simulation and already have some result.

Monte Carlo Simulations

• The details will be in the next talk by Francesco Knechtli 12/12

The Mean-Field Background

parametrization of the mean-field background (saddle point solution)

Five dimensional SU(2) Lattice Gauge Theory for Orbifold

 $T \times L^3 \times N_5$ lattice, SU(2) gauge theory on orbifold boundary condition

The Line of Constant Physics

We have 3 observables: $M_H(\beta, \gamma, N_5), M_Z(\beta, \gamma, N_5)$ and $M_{Z'}(\beta, \gamma, N_5)$

$$-4d \text{ Yukawa potential}$$

$$V_4 = -\alpha \frac{e^{-mr}}{r} + C, \quad \alpha > 0$$

$$F_4 = V'_4 = \alpha \frac{e^{-mr}}{r} (m + \frac{1}{r})$$

$$y = \log(r^2 F_4) = \log(\alpha) - mr + \log(mr + 1)$$

$$y' = -m + \frac{m}{mr + 1}$$

• $\rho_{HZ} = 1.38$

LCP; Change the Lattice spacing by keeping two dimensionless physical quantities fixed $\rho_{HZ} = \frac{m_H}{m_Z} = 126/91.19 = 1.38$ $F_1 = m_H \cdot R = 0.61$ $N_5 \to \infty$ means $a_4 \to 0$ on the LCP $(\because N_5 = \frac{\pi R}{a_5} = \frac{\pi R}{a_4}\gamma)$