2+1 flavour thermal studies on an anisotropic lattice

Chris Allton (Swansea University)

2+1 flavour thermal studies on an anisotropic lattice

Gert Aarts, CRA, Alessandro Amato, Wynne Evans, Pietro Giudice, Simon Hands, Aoife Kelly, Seyong Kim, Maria-Paola Lombardo, Dhagash Mehta, Bugra Oktay, Sinead Ryan, Jon-Ivar Skullerud, Don Sinclair, Tim Harris

FASTSUM Collaboration

2+1 flavour thermal studies on an anisotropic lattice

Gert Aarts, CRA, Alessandro Amato, Pietro Giudice, Simon Hands, Sinead Ryan, Jon-Ivar Skullerud

Particle Data Book

 $\sim 1,500~\mathrm{pages}$

zero pages on Quark-Gluon Plasma...

	1st Generation	2nd Generation
		(HSC parameters)
Flavours	2	2+1
Volume(s)	(2fm) ³	(3fm) ³ & (4fm) ³
a_s [fm]	0.167	0.123
a_t [fm]	0.028	0.035
anisotropy	6	3.5
$M_{\pi}/M_{ ho}$	~ 0.55	~ 0.45
Action	Gauge: Symanzik Improved	Gauge: Symanzik Improved
	Fermion: fine-Wilson,	Fermion: Clover,
	coarse-Hamber-Wu stout-link	Tadpole Improved

1st Generation

2 flavours smaller volume: (2fm)³ coarser lattices: $a_s = 0.167$ fm quark mass: $M_{\pi}/M_{\rho} = \sim 0.55$

N_s	N_{τ}	T(MeV)	T/T_c
12	16	460	2.10
12	18	409	1.86
12	20	368	1.68
12	24	306	1.40
12	28	263	1.20
12	32	230	1.05
12	80	90	0.42

1st Generation

2 flavours smaller volume: (2fm)³ coarser lattices: $a_s = 0.167$ fm quark mass: $M_{\pi}/M_{\rho} = \sim 0.55$

N_s	N_{τ}	T(MeV)	T/T_c
12	16	460	2.10
12	18	409	1.86
12	20	368	1.68
12	24	306	1.40
12	28	263	1.20
12	32	230	1.05
12	80	90	0.42

2nd Generation

2+1 flavours larger volume: $(3 \text{fm})^3 - (4 \text{fm})^3$ finer lattices: $a_s = 0.123 \text{fm}$ quark mass: $M_\pi/M_\rho = \sim 0.45$

N_s	N_{τ}	T(MeV)	T/T_c
24, 32	16	350	1.89
24	20	280	1.52
24, 32	24	235	1.26
24, 32	28	200	1.08
24, 32	32	175	0.95
24	36	155	0.84
24	40	140	0.76
32	48	115	0.63
16	128	45	0.24

- Polyakov Loop & its Susceptibility
- Light Mesons: Pseudoscalar vs Scalar
- Electric Charge Susceptibility, χ
- Electrical Conductivity, σ
- Charmonium Potential, V(r)
- **NRQCD** (Bottomonium) Spectral Functions, $\rho(\omega)$

- Polyakov Loop & its Susceptibility
- Light Mesons: Pseudoscalar vs Scalar
- Electric Charge Susceptibility, χ
- Electrical Conductivity, σ
- Charmonium Potential, V(r)
- **NRQCD** (Bottomonium) Spectral Functions, $\rho(\omega)$

BlueGene Q (DiRAC/Edinburgh) 200M core-hours = 1.5 rack-years BlueGene Q (PRACE/Cineca) 34M core-hours Polyakov Loop, L, related to free energy, F, via:

$$L(T) = e^{-F(T)/T}$$

However, *F* only defined up to addivitive renormatlisation constant $\Delta F = f(\beta, \kappa)$. Imposing renormalisation condition:

 $L_R(T_R) \equiv$ some number

gives us

 $L_R(T) = e^{-F_R(T)/T} = e^{-(F_0(T) + \Delta F)/T} = L_0(T)e^{-\Delta F/T} = L_0(T)Z_L^{N_\tau}$

and Z_L defined from renormalisation condition. Wuppertal-Budapest, PLB713(2012)342 [1204.4089]

Polyakov Loop

Polyakov Loop

Polyakov Loop

Light mesons & Chiral Symmetry

 \rightarrow (partial) restoration of chiral symmetry at high T

Electromagnetic current:

$$j_{\mu}^{\text{em}}(x) = e \sum_{f} q_{f} j_{\mu}^{f}(x)$$
Correlation F'ns: $G_{\mu\nu}(\tau, \mathbf{p}) = \int d^{3}x \, e^{i\mathbf{p}\cdot(\mathbf{x}-\mathbf{y})} \langle j_{\mu}^{\text{em}}(0, \mathbf{x}) j_{\nu}^{\text{em}}(\tau, \mathbf{y})^{\dagger} \rangle$

$$= \int_{0}^{\infty} \frac{d\omega}{2\pi} K(\tau, \omega) \, \rho_{\mu\nu}(\omega, \mathbf{p})$$
with kernel: $K(\tau, \omega) = \frac{\cosh[\omega(\tau - /2T)]}{\sinh[\omega/2T]}$
Conductivity: $\frac{\sigma}{T} = \frac{1}{6T} \lim_{\omega \to 0} \frac{\rho(\omega)}{\omega}, \qquad \rho(\omega) = \sum_{i=1}^{3} \rho_{ii}(\omega)$

Electromagnetic current:

$$\begin{aligned} j_{\mu}^{\text{em}}(x) = e \sum_{f} q_{f} j_{\mu}^{f}(x) \\ \text{Correlation F'ns:} \quad G_{\mu\nu}(\tau, \mathbf{p}) &= \int d^{3}x \, e^{i\mathbf{p}\cdot(\mathbf{x}-\mathbf{y})} \langle j_{\mu}^{\text{em}}(0, \mathbf{x}) j_{\nu}^{\text{em}}(\tau, \mathbf{y})^{\dagger} \rangle \\ &= \int_{0}^{\infty} \frac{d\omega}{2\pi} \, K(\tau, \omega) \, \rho_{\mu\nu}(\omega, \mathbf{p}) \\ \text{with kernel:} \quad K(\tau, \omega) &= \frac{\cosh[\omega(\tau - /2T)]}{\sinh[\omega/2T]} \\ \text{Conductivity:} \quad \frac{\sigma}{T} = \frac{1}{6T} \lim_{\omega \to 0} \frac{\rho(\omega)}{\omega}, \qquad \rho(\omega) = \sum_{i=1}^{3} \rho_{ii}(\omega) \end{aligned}$$

MEM approach M. Asakawa, T. Hatsuda and Y. Nakahara, Prog. Part. Nucl. Phys. 46, 459(2001) Alessandro Amato, (Mon 17:30, Room A)

$$C_{\rm em} = e^2 \sum_f q_f^2 = 5/9e^2$$

N-N potential

Hatsuda, PoS CD09 (2009) 068 use the Schrödinger equation to "reverse engineer" the potential, V(r), given the Nambu-Bethe-Salpeter wavefunction, $\psi(r)$:

input input

$$\begin{pmatrix} \frac{p^2}{2M} + V(r) \end{pmatrix} \psi(r) = \begin{bmatrix} \psi(r) \\ \psi(r) \end{bmatrix} \psi(r) = \begin{bmatrix} \psi(r) \\ \psi(r) \end{bmatrix}$$
output

 $\psi(r)$ is determined from a lattice simulation from correlators of *non-local* (point-split) operators, $J(x; \vec{r}) = q(x) \Gamma U(x, x + \vec{r}) \overline{q}(x + \vec{r})$

$$\begin{array}{lll} C(\vec{r},t) & = & \displaystyle\sum_{\vec{x}} < J(0;\vec{r}) \; J(x;\vec{r}) > \\ & \longrightarrow & |\psi(r)|^2 \; e^{-Et} \end{array}$$

P.W.M. Evans, CRA and J.-I. Skullerud, arXiv:1303.5331

Wynne Evans, Fri 17:10, Room A

Wynne Evans, Fri 17:10, Room A

- An expansion in v/c valid as quark mass M → ∞
 applicable for b-quarks
- Heavy quark mass, M > T

• *M* factored out of energy scale: $\omega \rightarrow \omega - M$

- no periodicity in time
 - bottom quark is a probe of thermal media
 - simpler numerically to deal with correlation f'ns
- NRQCD formulism we use is correct to $\mathcal{O}(v^4)$

Aarts et al, JHEP 1111 (2011) 103 [arXiv:1109.4496]

Tim Harris, Fri 18:10, Room A

Electrical Conductivity

- First time the temperature dependency has been uncovered on lattice
- Results compatible with previous determinations

Inter-quark potential in charmonium at finite temperature

First time this was done with:

relativisitc quarks rather than static quarks

No issue with Free Energy and the Entropy Term...

finite temperature rather than T = 0

Bottomonium spectral functions at finite temperature

```
s-wave (J/\psi \text{ and } \eta_b) survive to large T
```

p-wave (χ_{b1}) melts at $T \sim T_c$

3rd Generation $a_t \rightarrow 0$ Currently being tuned 4th Generation $a_s \rightarrow 0$

- 3rd Generation $a_t \rightarrow 0$ Currently being tuned
- 4th Generation $a_s \rightarrow 0$
- Conductivity
 - Other transport coefficients
 - Continuum Limit

Inter-quark potential in charmonium at finite temperature

- Study P-wave states
- Understand excited states
- Larger volumes
- Continuum Limit

Bottomonium spectral functions at finite temperature

- Momenta
- Take continuum limit

Other FASTSUM Lat13 Presentations

- Transport Coefficients of the QGP
 - Alessandro Amato Mon, 17:30, Seminar Room A Parallels 2A
- Electric charge susceptibility
 - Pietro Giudice Tuesday evening Poster Session
- P wave bottomonium spectral functions
 - Gert Aarts Fri, 16:50, Seminar Room A Parallels 10A
- Charmonium Potentials at Non-Zero Temperature
 - Wynne Evans Fri, 17:10, Seminar Room A Parallels 10A
- Spectral functions of charmonium
 - Aoife Kelly Fri, 17:50, Seminar Room A Parallels 10A
- Bottomonium spectrum
 - Tim Harris Fri, 18:10, Seminar Room A Parallels 10A