Moments of structure functions for $N_f = 2$ near the physical point.

S. Collins University of Regensburg

In collaboration with G. Bali, B. Gläßle, M. Göckeler, <u>J. Najjar</u>, <u>R. Rödel</u>, A. Schäfer, R. Schiel, W. Söldner and A. Sternbeck

Lattice 2013, Mainz, July 30th.

Outline

- Introduction
- Simulation details
- Excited state analysis
- ► g_A
- ► $\langle x \rangle_{u-d}$
- g_T and g_S
- Outlook

Introduction

Nucleon structure investigated using matrix elements of the form $\langle N, p' | \bar{q} \Gamma q | N, p \rangle$: q = p' - p, (generalised) form factors $\rightarrow A$. Sternbeck.

p' = p = 0: lowest moments of pol. and unpol. structure functions.

$$2\int_{0}^{1} \mathrm{d}x \, x \, F_{1}(x, Q^{2}) = c_{11}^{(u)} \langle x \rangle_{u}(\mu) + c_{11}^{(d)} \langle x \rangle_{d}(\mu) + c_{11}^{(s)} \langle x \rangle_{s}(\mu)$$

$$\langle x
angle_u(\mu) = \sum_{q=u,d,s} Z_q(\mu) \langle x
angle_q^{latt} \quad \langle x
angle_q^{latt} \quad \propto \langle N, p | ar{q} [\gamma_4 \stackrel{\leftrightarrow}{D}_4 - rac{1}{3} \gamma \stackrel{\leftrightarrow}{\mathbf{D}}] q | N, p
angle^{latt}$$

$$2\int_0^1 \mathrm{d}x \mathbb{1} g_1(x,Q^2) = \frac{1}{2} [e_{10}^{(u)} \langle \mathbb{1} \rangle_{\Delta u}(\mu) + e_{10}^{(d)} \langle \mathbb{1} \rangle_{\Delta d}(\mu) + e_{10}^{(s)} \langle \mathbb{1} \rangle_{\Delta s}(\mu)]$$

$$\langle \mathbb{1}
angle_{\Delta u}(\mu) = \sum_{q=u,d,s} Z'_q(\mu) \langle \mathbb{1}
angle^{latt}_{\Delta q}, \quad \langle \mathbb{1}
angle^{latt}_{\Delta q} \quad \propto \langle N, p, s | ar{q} \gamma_i \gamma_5 q | N, p, s
angle^{latt}$$

Also non-Standard Model couplings $\bar{q}q \rightarrow g_S$ and $\bar{q}\sigma_{\mu\nu}q \rightarrow g_T$.

Evaluate $\langle N, p | \bar{q} \Gamma q | N, p \rangle$

q = u/d: both connected and disconnected terms.

q = s: only the disconnected term.

Mixing under renormalisation possible.

Disconnected results for $\Gamma = \mathbb{1}$, talk by A. Sternbeck.

Here use isovector combinations $\langle N, p | \bar{u} \Gamma u - \bar{d} \Gamma d | N, p \rangle \rightarrow g_A = \Delta u - \Delta d, \ \langle x \rangle_{u-d}, \ g_S^{u-d}, \ g_T^{u-d}.$

Simulation details

 $N_f = 2$, NP-improved clover fermions, Regensburg+QCDSF configs.

β	Vol	#	<i>a</i> fm	m_π MeV	Lm_{π}	t _{sink}
5.20	32 imes 64	823 × 2	0.08	280	3.7	13
5.29	24 imes48	1124 imes 2	0.07	430	3.7	15
	32 imes 64	2027 imes 2 (1)		294	3.4	7,9,11,13,15,17
	40 imes 64	2028×2		289	4.2	15
	48 imes 64	3400×2		157	2.7	15
	64 imes 64	940 imes 3		150	3.5	15
5.40	32 imes 64	1170 imes 2	0.06	491	4.8	17
	48×64	2178 imes 2		260	3.8	17

This analysis using sequential propagators: using stochastic estimates see talk J. Najjar on Thursday.

Gauge invariant Wuppertal smearing - optimised for two-point function.

Systematics: in general - finite a, finite V, non-physical m_q , excited states.

Excited state analysis

$$\begin{split} C_{2pt}(t_{sink}) &= \sum_{\vec{x}} T^{\alpha\beta} \langle \mathcal{N}_{\alpha}(\vec{x}, t_{sink}) \overline{\mathcal{N}}_{\beta}(\vec{0}, 0) \rangle = |Z_0|^2 e^{-m_0 t_{sink}} + |Z_1|^2 e^{-m_1 t_{sink}} + \dots \\ &= A_0 e^{-m_0 t_{sink}} [1 + e^{-\Delta m t_{sink}} + \dots] \end{split}$$

$$\begin{split} C_{3pt}(t_{sink}, t_{ins}) &= \sum_{\vec{x}, \vec{y}} T^{\alpha\beta} \langle \mathcal{N}_{\alpha}(\vec{x}, t_{sink}) O(\vec{y}, t_{ins}) \overline{\mathcal{N}}_{\beta}(\vec{0}, 0) \rangle \\ &= |Z_0|^2 \langle N_0 | O | N_0 \rangle e^{-m_0 t_{sink}} + Z_1 Z_0^* \langle N_1 | O | N_0 \rangle e^{-m_0 t_{ins}} e^{-m_1 (t_{sink} - t_{ins})} \\ &+ Z_0 Z_1^* \langle N_0 | O | N_1 \rangle e^{-m_1 t_{ins}} e^{-m_0 (t_{sink} - t_{ins})} + |Z_1|^2 \langle N_1 | O | N_1 \rangle e^{-m_1 t_{sink}} + \dots \\ &= A_0 e^{-m_0 t_{sink}} \left(B_0 + B_1 [e^{-\Delta m (t_{sink} - t_{ins})} + e^{-\Delta m t_{ins}}] + B_3 e^{-\Delta m t_{sink}} \right) + \dots \end{split}$$

where $B_0 = \langle N_0 | O | N_0 \rangle$, $B_1 \propto \langle N_1 | O | N_0 \rangle$, $B_2 \propto \langle N_1 | O | N_1 \rangle$,

Fit C_{2pt} and C_{3pt} simultaneously for different t_{sink} and compare with constant fit to

$$\frac{C_{3pt}(t_{sink}, t_{ins})}{C_{2pt}(t_{sink})} = B_0 + \dots$$

A lot of work on excited state contamination recently. For example,

Dinter et al. (2011) arXiv:1108.1076 - multiple t_{sink} . Owen et al. (2012) arXiv:1212.4668 - variational approach. Capitani et al. (2012) arXiv:1205.0180 - summation method. Green et al. (2012) arXiv:1209.1687 - summation method. Bhattacharya et al. (2013) arXiv:1306.5435 - fits to multiple t_{sink} .

Non-perturbative renormalisation: Constantinou et al. arXiv:1303.6776, Göckeler et al. (QCDSF/UKQCD) arXiv:1003.5756.

All results preliminary! Work in progress.

 $\beta = 5.29, m_{\pi} = 290$ MeV, $V = 32 \times 64$ lattice, $t_{sink} = 7, 9, 11, 13, 15, 17$.

Example x_{u-d} and g_A : $C_{3pt}(t_{ins}, t_{sink})/C_{2pt}(t_{sink})$ + additional factors.

Fit compared to data: $C_{3pt}(t_{ins}, t_{sink})/(A_0 e^{-m_0 t_{sink}})$ compared to

$$\mathcal{F}=B_0+B_1[e^{-\Delta m(t_{sink}-t_{ins})}+e^{-\Delta m t_{ins}}]+B_3e^{-\Delta m t_{sink}}$$

+ additional factors.

Excited state contribution to g_A cancels in C_{3pt}/C_{2pt} .

Variation in fitting range: $\Delta t = t_{min} = t_{sink} - t_{max}$ for C_{3pt} .

Variation for C_{2pt} , $t_{max} = 13, 17, 20, 23$ and $t_{min} = 2, 3, 4$.

Comparison with constant fits to C_{3pt}/C_{2pt} for different t_{sink} .

Apply to ensembles with single t_{sink} : $\beta = 5.29$, $m_{\pi} = 157$ MeV, $V = 48^3 \times 64$.

 $C_{3pt}(t_{sink}, t_{ins}) = A_0 e^{-m_0 t_{sink}} \left(B_0 + B_1 [e^{-\Delta m(t_{sink} - t_{ins})} + e^{-\Delta m t_{ins}}] + B_3 e^{-\Delta m t_{sink}} \right)$ Free fit: $B_3 = 0$.

Constrained fit: using excited state parameters from multi- t_{sink} fits. $\langle N_1 | O | N_0 \rangle$ and $\langle N_1 | O | N_1 \rangle$

Results from a constant fit to C_{3pt}/C_{2pt} .

Finite volume effects: $m_\pi \sim$ 290, $Lm_\pi =$ 3.4 and 4.2 $m_\pi \sim$ 150, $Lm_\pi =$ 2.7 and 3.5

Finite a effects possible.

Comparison of $N_f = 2$ results.

 $N_f = 2 + 1$: RBC/UKQCD (2010), QCDSF (2010), HSC (2011), CSSM (2012), LHPC (2012). $N_f = 2 + 1 + 1$: ETMC (2013), PNDME (2013).

$\langle x \rangle_{u-d}$

- No significant finite volume effects
- Possible a effect?

Comparison of NP renormalised $N_f = 2$ results.

 $N_f = 2 + 1$: RBC/UKQCD (2010), LHPC (2010), LHPC (2012). $N_f = 2 + 1 + 1$: ETMC (2013)

g_S^{u-d} and g_T^{u-d}

• No significant dependence on β , V or m_q .

g_S^{u-d} and g_T^{u-d} : comparison with other groups

Outlook

Work in progress to investigate the systematic uncertainties in calculating $\langle x \rangle_{u-d}$ and g_A .

- Analysis needs to be finalised increased statistics at $m_{\pi} = 150$ MeV, $Lm_{\pi} = 3.5$.
- Excited states contamination can be brought under control.
- ► Volume effects for g_A generating $Lm_{\pi} = 6.7$ at $m_{\pi} = 290$ MeV, finite V extrapolation.
- ▶ g_A and ⟨x⟩_{u-d}, possible finite a effects generating β = 5.20 ensemble.

Results for g_S and g_T consistent with other groups.

Calculation of disconnected contributions in progress.