Nucleon generalized form factors from lattice QCD near the physical quark mass

... and an update on our nucleon mass and sigma term data

Andre Sternbeck University of Regensburg, Germany

in collaboration with:

Gunnar Bali, Sara Collins, Benjamin Gläßle, Johannes Najjar, Meinulf Göckeler, Rudolf Rödl, Andreas Schäfer, Wolfgang Söldner and Philipp Wein

Outline

Nucleon generalized form factors

- (t, m_{π}) dependence: $A_{20}, B_{20}, C_{20}, \ ilde{A}_{20}, ilde{B}_{20}$
- Comparison of old and new $N_f = 2$ data (impact of smearing)
- Extension of BChPT to full one-loop

Nucleon mass and sigma term

- New data for $m_{\pi} = 151..., 290, ..., 490 \, {\rm MeV}$
- Pion-Nucleon sigma term
- Nucleon mass fit

Warning: All results are yet preliminary and may change.

GPDs in a nutshell

Generalized Parton Distributions (GPDs)

- introduced late `90s, for a systematic study of hadron structure
- comprehensive description of the hadron structure from first principles

Contain information

- of traditional form factors and parton distributions (limiting cases)
- the quark orbital angular momentum
- various inter- and multi-parton correlations

In particular important for

- spin structure of the proton
- in deeply virtual Compton scattering (DVCS),
 analysis very demanding, requires
 partial modeling of combined *x*-, ξ- and *t*-dependence

GPDs in a nutshell

Generalized Parton Distributions (GPDs)

- introduced late `90s, for a systematic study of hadron structure
- comprehensive description of the hadron structure from first principles

Contain information

- of traditional form factors and parton distributions (limiting cases)
- the quark orbital angular momentum
- various inter- and multi-parton correlations

In particular important for

- spin structure of the proton
- in deeply virtual Compton scattering (DVCS),
 analysis very demanding, requires
 partial modeling of combined x-, ξ- and t-dependence

Cross-check with lattice QCD important

GPDs in a nutshell

Nucleon:

- Matrix elements parametrized by 2 vector, 2 axial-vector and 4 tensor GPDs

 $\begin{aligned} & \text{bilocal operator (see relevant reviews)} \\ & \langle N(P')|O_V^{\mu}(x)|N(P)\rangle = \overline{U}(P') \left\{ \gamma^{\mu} H(x,\xi,t) + \frac{i\sigma^{\mu\nu}\Delta_{\nu}}{2m_N} E(x,\xi,t) \right\} U(P) + \text{ht} \\ & \langle N(P')|O_A^{\mu}(x)|N(P)\rangle = \overline{U}(P') \left\{ \gamma^{\mu}\gamma_5 \widetilde{H}(x,\xi,t) + \frac{\gamma_5 \Delta^{\mu}}{2m_N} \widetilde{E}(x,\xi,t) \right\} U(P) + \text{ht} \end{aligned}$

- Kinematic variables: (longitudinal) momentum fraction $x, \xi, t - - - m momentum transfer -Q^2 = t = -\Delta^2 \quad (\Delta = P' - P)$ longitudinal momentum transfer (skewness parameter) $\xi = -n \cdot \frac{\Delta}{2}$ light-cone vector nsuch that $n \cdot \overline{P} = 1$ $\overline{P} = \frac{P' + P}{2}$

GPDs on the lattice?

Direct determination not possible

GPDs parametrize matrix elements of **bi-local** operators, separated by a light-like interval

$$\langle N(P')|O_V^{\mu}(x)|N(P)\rangle = \overline{U}(P')\left\{\gamma^{\mu}H(x,\xi,t) + \frac{i\sigma^{\mu\nu}\Delta_{\nu}}{2m_N}E(x,\xi,t)\right\}U(P) + \text{ht}$$

- Wick-Rotation makes calculation on Euclidean lattice impossible

Generalized Form Factors

Mellin Moments of GPDs

– can be expressed by polynomials in ξ

$$\int_{-1}^{1} dx x^{n-1} \begin{bmatrix} H(x,\xi,t) \\ E(x,\xi,t) \end{bmatrix} = \sum_{k=0}^{[(n-1)/2]} (2\xi)^{2k} \begin{bmatrix} A_{n,2k}(t) \\ B_{n,2k}(t) \end{bmatrix} \pm \delta_{n,\text{even}} (2\xi)^n C_n(t)$$

expansion coefficients = generalized form factors

Generalized Form Factors

Mellin Moments of GPDs

- can be expressed by polynomials in ξ

$$\int_{-1}^{1} dx x^{n-1} \begin{bmatrix} H(x,\xi,t) \\ E(x,\xi,t) \end{bmatrix} = \sum_{k=0}^{[(n-1)/2]} (2\xi)^{2k} \begin{bmatrix} A_{n,2k}(t) \\ B_{n,2k}(t) \end{bmatrix} \pm \delta_{n,\text{even}} (2\xi)^n C_n(t)$$

expansion coefficients = generalized form factors

Lattice QCD

- calculate these form factors via expectation values of **local** operators

We have

Data

- Nucleon (generalized) form factors for n = 1,2,3

$$\int_{-1}^{1} dx x^{n-1} \begin{bmatrix} H(x,\xi,t) \\ E(x,\xi,t) \end{bmatrix} = \sum_{k=0}^{[(n-1)/2]} (2\xi)^{2k} \begin{bmatrix} A_{n,2k}(t) \\ B_{n,2k}(t) \end{bmatrix} \pm \delta_{n,\text{even}} (2\xi)^n C_n(t)$$

- Also axial and tensor GFFs and pion GFFs
- 3pt-functions with no, one and two derivatives \rightarrow ratios of 3-point and 2-point functions
- Two lattice spacings, pion masses: 150...490 MeV

This talk

- Flash some of our n = 2 GFFs results (one derivative)

t-dependence of $A_{20}(t)$

 Lattice2011 data (Jacobi-Smearing)

t-dependence of $A_{20}(t)$

- Lattice2011 data (Jacobi-Smearing)
- New data (Wuppertal smearing)
- Constant offset at small t
- Consistent with findings for $\langle x \rangle$
- Slopes are similar
- Deviations (and error) increase with t

t-dependence of $A_{20}(t)$

- Lattice2011 data (Jacobi-Smearing)
- New data (Wuppertal smearing)
- Constant offset at small t
- Consistent with findings for $\langle x \rangle$
- Slopes are similar
- Deviations (and error) increase with t

Varying m_{π}

- 151 MeV, 285 MeV, 429 MeV
- data shifted downwards with m_{π}

t -dependence of Vector GFFs: B_{20} and C_{20}

– Lattice2011 and new data: for B_{20} deviations increase with t

 $A_{20}, B_{20}, C_{20}, \tilde{A}_{20}, \tilde{B}_{20}$

Baryon Chiral Perturbation theory

Up to now

[M. Dorati, T. A. Gail, T. R. Hemmert (2008)]

- leading 1-loop (2nd order) calculation of the nucleon-to-nucleon matrix element (twist-2 tensor operator) was available
- some 3rd order contributions were included

New: full 1-loop expressions (BChPT)

- nucleon-to-nucleon matrix elements (tensor) and
- for the pseudo tensor operators

Advantage

- allows fit of the combined (Q^2, m_{π}) -dependence simultaneous fit of all 5 GFFs
- parameters enters different expression for form factors
- Disadvantage: 16 unknown parameters, valid only for small $m_{\pi}, -Q^2$

 $\rightarrow A_{20}, B_{20}, C_{20}$

[P. Wein, P. Bruns, A. Schäfer (2013)]

$$\rightarrow \tilde{A}_{20}, \tilde{B}_{20}$$

First attempt of a simultaneous fit

Observations

- it works (from a practical point of view)
- small Q^2 -dependence almost linear
- validity range of expressions unclear
- current fit parameters certainly beyond their physical values (unknown)

Next

- systematic study \rightarrow stay tuned!

Isoscalar GFFssoon

Data available

- for connect part so far (see backup slide)
- disconnected is being produced (next slides: first data for scalar case)

Why?

In the forward limit related to total angular momentum of quark in the nucleon (Ji's sum rule)

$$J^{q} = \frac{1}{2} \int_{-1}^{1} dx x (H(x,\xi,0) + E(x,\xi,0)) \equiv \frac{1}{2} (A_{20}(t=0) + B_{20}(t=0)).$$

- Can also compute orbital angular momentum $L^q = J^q - s^q$

when combined with the quark spin contributions to the nucleon (= forward value of the axial form factor)

$$s^{q} = \frac{1}{2} \int_{-1}^{1} dx \tilde{H}(x,\xi,0) = \frac{1}{2} \tilde{A}_{10}(t=0)$$

Outline

Nucleon generalized form factors

- (t, m_{π}) dependence: $A_{20}, B_{20}, C_{20}, \tilde{A}_{20}, \tilde{B}_{20}$
- Comparison of old and new $N_f = 2$ data (impact of smearing)
- Progress on BChPT

Nucleon mass and sigma term

- New data for $m_{\pi} = 151..., 290, ..., 490 \, {\rm MeV}$
- Pion-Nucleon sigma term
- Nucleon mass fit

Warning: All results are yet preliminary and may change.

Nucleon mass and sigma terms

Nucleon

- spontaneous χ SB generates most of nucleon's mass
- small fraction from sea + valence quarks

Sigma terms $\sigma_q = m_q \langle N | \bar{q}q | N \rangle$

 parametrizes individual quark contribution to nucleon mass

$$\implies f = \frac{\sigma_q}{M_N}$$

Pion-Nucleon sigma term $\sigma_{\pi N} = m_l \langle N | \bar{u}u + \bar{d}d | N \rangle$

- contribution of light quarks

 $M_N = M_0 + \sigma_{\pi N} + \dots$

- phenomenology does not give a clear answer on $\sigma_{\pi N}$

$$m_l = rac{m_u + m_d}{2}$$

(A) indirectly via Feynman-Hellmann theorem

(A) indirectly via Feynman-Hellmann theorem

(A) indirectly via Feynman-Hellmann theorem

$$\sigma_{\pi N} = m_{\pi}^2 \frac{\partial M_N}{\partial m_{\pi}^2}$$

- LQCD allows to study $M_N(m_{\pi})$
- expensive close to physical point

(B) directly

- Computational intensive (disconnected diagrams)
- became feasible
 in recent years
 (single quark mass / lattice spacing)

New direct calculations of $\sigma_{\pi N}$

New direct calculations of $\sigma_{\pi N}$

Physical scale and low energy constants

Baryon Chiral Perturbation theory (BChPT)

Nucleon mass

$$M_N = M_0 - 4c_1 m_\pi^2 - \frac{3g_A^2 m_\pi^3}{32\pi F_\pi^2} + 4e_1^r m_\pi^4 + \frac{m_\pi^4}{8\pi^2 F_\pi^2} \left[\frac{3c_2}{16} - \frac{3g_A^2}{8M_0} + \log\frac{m_\pi}{\lambda} \left(8c_1 - \frac{3c_2}{4} - 3c_3 - \frac{3g_A^2}{4M_0} \right) \right]$$

Sigma term

$$\sigma = -4c_1 m_\pi^2 - \frac{9g_A^2 m_\pi^3}{64\pi F_\pi^2} + m_\pi^4 \left[8e_1^r - \frac{8c_1 l_3^r}{F_\pi^2} + \frac{3c_1}{8\pi^2 F_\pi^2} - \frac{3c_3}{16\pi^2 F_\pi^2} - \frac{9g_A^2}{16\pi^2 F_\pi^2} + \frac{1}{4\pi^2 F_\pi^2} \log \frac{m_\pi}{\lambda} \left(7c_1 \Rightarrow \frac{3c_2}{4} - 3c_3 - \frac{3g_A^2}{4M_0} \right) \right]$$

Physical scale and low energy constants

Baryon Chiral Perturbation theory (BchPT)

$$\begin{split} \sigma &= -4c_1 m_\pi^2 - \frac{9g_A^2 m_\pi^3}{64\pi F_\pi^2} + m_\pi^4 \left[\underbrace{8e_1^r}_{-1} - \frac{8c_1 l_3^r}{F_\pi^2} + \frac{3c_1}{8\pi^2 F_\pi^2} - \frac{3c_3}{16\pi^2 F_\pi^2} \right. \\ & \left. - \frac{9g_A^2}{64\pi^2 M_0 F_\pi^2} + \frac{1}{4\pi^2 F_\pi^2} \log \frac{m_\pi}{\lambda} \left(\underbrace{7c_1 \Rightarrow \frac{3c_2}{4} - 3c_3 - \frac{3g_A^2}{4M_0}} \right) \right] \end{split}$$

$$\underbrace{l_3^r}_{\scriptscriptstyle \mathbb{R}} \equiv -\frac{1}{64\pi^2} \left(\underline{\bar{l}_3} + 2\log\frac{m_\pi^{\rm phys}}{\lambda} \right)$$

Our approach: Simultaneous fit

as in Bali et al, Nucl. Phys. B866 (2013) 1-25 [1206.7034]

Fit

- nucleon mass and sigma term data plus their volume dependence
- all data in units of r_0 : $\hat{M}_N \equiv r_0 M_N, \ \hat{L} \equiv L/r_0, \dots$

χ^2 function

volume correction

 $r_0 = 0.501(10)(11)$ fm

with 2012 data

Illustration of fit

Picture from arXiv: 1206.7034

First look at (new) combined fit

First look at (new) combined fits

Summary

Nucleon form factors

- performed reanalysis of the QCDSF + Regensburg $N_f = 2$ ensembles
- added a new ensemble at m_{π} =150 MeV (64⁴)
- used improved smearing to reduce excited-state contaminations
- Q²-dependence changes (form factor dependent)
- have: 3-point functions with no, one and two derivatives
- full analysis will follow

Pion-Nucleon sigma term

- extended our calculation of $\sigma_{\pi N}$ to m_{π} =150...490 MeV
- will allow for improved estimate of physical $\sigma_{\pi N}$
- almost no extrapolation needed

Also

- helps much also for our nucleon mass fits (\rightarrow estimating $r_0...$)

Warning: All results are yet preliminary and may change.

Thank you for your attention

Isoscalar GFFs

Some example plots for connected part

