The 31st International Symposium on Lattice Field Theory, Mainz

Looking at the gluon moment of the nucleon with dynamical twisted mass fermions

Christian Wiese

with Constantia Alexandrou, Vincent Drach, Kyriakos Hadjiyiannakou, Karl Jansen, Bartosz Kostrzewa

DESY Zeuthen

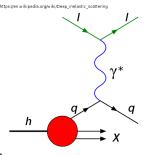
July 30th 2013

Outline

- computing $\langle x
 angle_g$ with the Feynman-Hellmann theorem
- direct way of computing the gluon moment $\langle x\rangle_g$ with a disconnected three-point function
- current simulation setup
- status of computations
- future plans

Introduction I

- DIS: existence of partons in the nucleon
- $f_p(x)$ parton distribution function
- probability of finding a parton to have a momentum fraction of x
- first moment of parton distribution function: $\langle x \rangle_p = \int x f_p(x) dx$
- $\rightarrow\,$ average momentum contribution to the nucleon momentum
 - $\sum_{p} \langle x \rangle_p = 1$
 - experimentally: $\langle x \rangle_{u+d} \approx 0.4$
- \rightarrow There is something missing.

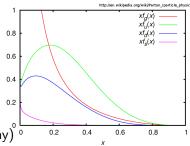


Introduction II

• solution: gluon pdf $f_g(x)$ and gluon moment $\langle x \rangle_g$

•
$$\sum_{q} \langle x \rangle_q + \langle x \rangle_g = 1$$

- up to now: many computations of fermionic quantities e.g.: $\langle x \rangle_{u-d}$ (Talk by C. Alexandrou today)⁰ g_A (Talk by M. Constantinou today) $\sigma_{\pi N}$ (Talk by V. Drach today)
- only few attempts to compute $\langle x \rangle_g$ (with quenched fermions)



Computation of gluon moment I

- We can access the gluon moment via the matrix elements of a suitable operator:
- gluon operator:

$$\mathcal{O}_{\mu\nu} = -\mathsf{tr}_c G_{\mu\rho} G_{\nu\rho}$$

• We can compute the matrix elements with a ratio of a three-point and a two-point function:

$$\frac{\langle H(p,t)\mathcal{O}(\tau)H(p,0)\rangle}{\langle H(p,t)H(p,0)\rangle} \stackrel{0\ll\tau\ll t}{=} (\mathcal{O})_{H(p)H(p)}$$

Computation of gluon moment II

two possible forms of the operator

•
$$\mathcal{A}_i = \mathcal{O}_{i4}$$

- $\mathcal{B} = \mathcal{O}_{44} \frac{1}{3}\mathcal{O}_{jj}$ (euclidean notation for T_{00})
- after form factor decomposition

$$(\mathcal{A}_i)_{N(p)N(p)} = -ip_i \langle x \rangle_g$$

× requires non-zero momentum

$$(\mathcal{B})_{N(p)N(p)} = (m_N + \frac{2}{3E_N}\vec{p}^2)\langle x \rangle_g$$

 \times subtraction of two terms similar in magnitude

Feynman-Hellmann theorem

- method for computing the matrix elements following a paper of QCDSF and UKQCD Collaborations^a
- starting point: Feynman-Hellmann theorem
- introduce parameter λ into the action: $S \rightarrow S(\lambda)$
- then one can derive:

$$\frac{\partial E_N}{\partial \lambda} = (: \frac{\partial \hat{S}(\lambda)}{\partial \lambda} :)_{N(p)N(p)}$$

• :...: means the subtraction of the vacuum term

^aR. Horsley et al. Phys. Lett. B 714 (2012) 312 [arXiv:1205.6410 [hep-lat]].

Feynman-Hellmann theorem II

- we modify the Wilson plaquette action:
- $S(\lambda) = \frac{1}{3}\beta(1+\lambda)\sum_{i} \operatorname{tr}_{c}[1-U_{i4}] + \frac{1}{3}\beta(1-\lambda)\sum_{i< j} \operatorname{tr}_{c}[1-U_{ij}]$
- $\rightarrow \ \lambda = 0$ is the standard plaquette action
 - the derivative can be related to the gluon moment:

•
$$\frac{\partial E_N}{\partial \lambda} = \frac{3}{2} (\mathcal{B})_{N(p)N(p),\lambda}$$

•
$$\frac{\partial E_N}{\partial \lambda}\Big|_{\lambda=0} = -\frac{3}{2}(m_N + \frac{2}{3E_n}\vec{p}^2)\langle x \rangle_g$$

- no subtraction here because vacuum term of the operator is zero
- when computing at zero momentum we get

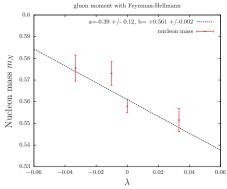
$$\langle x \rangle_g = \frac{2}{3am_N} \frac{\partial am_N}{\partial \lambda} \big|_{\lambda=0}$$

• we need to compute the nucleon mass for different λ values

Setup for the Feynman-Hellman theorem

- $N_f = 2 + 1 + 1$ with twisted mass fermions
- \rightarrow Iwasaki action!
 - $\beta = 1.90$, ($a \approx 0.078$ fm)
 - $L^3 \times T = 24^3 \times 48$
 - $\mu = 0.0085 \ (m_{PS} \approx 491 \ {\rm MeV})$
 - at the moment ${\cal O}(200)$ configurations
 - $\lambda = \{-0.0333, -0.01, +0.0333\}$
 - For $\lambda = 0$ we can use existing results for the nucleon.
 - problem: We have to tune κ for each λ .

Preliminary data



- visible slope
- Is it linear?
- $\rightarrow\,$ we need more statistics and more λ points

Computation with the direct method

- alternative: directly compute the matrix element with given three- and two-point functions
- For zero zero momentum:
- $\rightarrow (\mathcal{B})_{N(0)N(0)} = m_N \langle x \rangle_g$
 - write the operator in terms of plaquettes:

 $\mathcal{B}(t) = rac{4}{9} rac{eta}{a} (\sum_i \mathrm{tr}_c[U_{i4}(t)] - \sum_{i < j} \mathrm{tr}_c[U_{ij}(t)])$

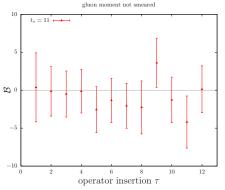
• The three-point function is disconnected and can be computed by multiplying the two-point function with the inserted operator:

$$\frac{\langle [N(t)N(0)]\mathcal{B}(\tau)\rangle}{\langle N(t)N(0)\rangle} \stackrel{0 \ll \tau \ll t}{=} (\mathcal{B})_{N(0)N(0)}$$

Setup for the direct method

- $N_f = 2 + 1 + 1$ with twisted mass fermions
- $\beta = 1.95 \ (a \approx 0.078 \ {\rm fm})$
- $L^3 \times T = 32^3 \times 64$
- $\mu = 0.0055 \ (m_{PS} \approx 393 \ {\rm MeV})$
- *O*(2300) configurations with 32 two-point functions each (proton and neutron two-point function for 16 different source positions)
- $\sim~73000$ measurements

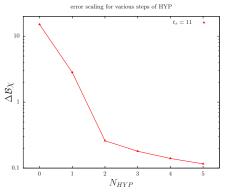
Matrix element of the unsmeared operator



- poor signal, compatible with 0
- try using a HYP smeared operator as suggested in ^a(quenched work)

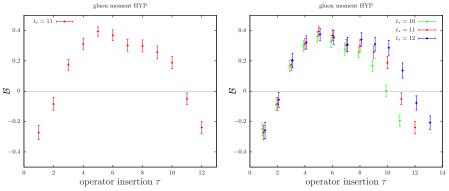
^aH. B. Meyer and J. W. Negele, Phys. Rev. D **77**, 037501 (2008) [arXiv:0707.3225 [hep-lat]].

Matrix element of the unsmeared operator



- strong scaling of the error with HYP steps
- using more then one step of HYP smearing seems reasonable
- Our choice: We used 5 steps of HYP smearing with $\alpha_{1,2,3} = \{0.75, 0.6, 0.3\}.$

Matrix element: HYP-smeared operator



- nice signal, possible plateau
- result needs to be normalized and renormalized

Renormalization

- Gluon operators are singlet operators.
- \rightarrow mixing with quark singlet

•
$$\binom{\langle x \rangle_g^{\overline{MS}}}{\sum_q \langle x \rangle_q^{\overline{MS}}} = Z_{2 \times 2} \binom{\langle x \rangle_g^{bare}}{\sum_q \langle x \rangle_q^{bare}}$$

• $\langle x \rangle_g^{bare} = Z_g \langle x \rangle_g^{lat}, \ \langle x \rangle_q^{bare} = Z_q \langle x \rangle_q^{lat}$
 $\rightarrow \langle x \rangle_g^{\overline{MS}} = Z_{bare \ gg}^{\overline{MS}} \langle x \rangle_g^{bare} + [1 - Z_{bare \ qq}^{\overline{MS}}] \sum_q \langle x \rangle_q^{bare}$

- we need Z_g , Z_q , $Z_{\overline{bare}\;qq}$, $Z_{\overline{bare}\;qg}^{\overline{MS}}$, $\langle x\rangle_u^{lat}$ and $\langle x\rangle_d^{lat}$
- ? different renormalization because of using a HYP smeared operator

Conclusion

- Two methods which can be used to extract $\langle x \rangle_g$:
- Feynman-Hellmann theorem
- + visible signal with small statistics
 - configurations and two-point functions for $\boldsymbol{\lambda}$ have to be computed
 - direct method:
- + two-point functions and configurations are available
- + computation of plaquettes is cheap
 - need large statistics

Future plans and problems

- Which method should be preferred?
- FHt: λ for the improved term of the gauge action?
- How to compute all the renormalization factors?
- physical point, continuum limit
- gluon moment of other hadrons

Thanks

Thank you for your attention and future discussions.