B-physics with Nf=2 Wilson fermions

Bernardoni Fabio

In collaboration with: B. Blossier, J. Bulava, M. Della Morte, P. Fritzsch, N. Garron, A. Gerardin, J.Heitger, H. Simma, R. Sommer

Lattice Symposium 2013, 30th July 2013, Mainz, Germany

F. Bernardoni (NIC, DESY (Zeuthen))

B-physics with Nf=2 Wilson fermions

Outline

Motivation well known:

- matrix elements for *B* decays (cfr $|V_{ub}|$)
- $m_b(m_b)$ for perturbative computations
- reproduce B mesons mass spectrum

Method

- CLS configurations
- HQET renormalization, matching, improvement
- large volume computations

Results

predictions
$$f_B$$
, f_{B_s} , $\frac{f_{B_s}}{f_B}$

postdictions

$$m_b^{\overline{MS}}(m_b), \ m_{B_s} - m_B, \ m_{B^*} - m_B, \ m_{B_s^*} - m_{B_s}$$

•

Outline

Motivation well known:

- matrix elements for *B* decays (cfr $|V_{ub}|$)
- $m_b(m_b)$ for perturbative computations
- reproduce B mesons mass spectrum

Method

- CLS configurations
- HQET renormalization, matching, improvement
- large volume computations

Results

predictions
$$f_B$$
, f_{B_s} , $\frac{f_{B_s}}{f_B}$

postdictions

$$m_b^{MS}(m_b), m_{B_s} - m_B, m_{B^*} - m_B, m_{B_s^*} - m_{B_s}$$

•

Treatment of light quarks

 $N_f = 2$ sea Wilson quarks

 Volume effects exponentially suppressed:

 $Lm_{\pi} \geq 4.0$

• Light quark mass chiral extrapolation:

 $(190 \lesssim m_{\pi} \lesssim 450) \text{ MeV}$

- Discretization effects:
 - 3 lattice spacings a

0.048, 0.065, 0.075 fm

- NP renormalization
- NP O(a) improvement

id	L/a	<i>a</i> [fm]	m_{π} [MeV]	m _π L
A4	32	0.0755	380	4.7
A5			330	4.0
B6	48		270	5.2
E5	32	0.0658	440	4.7
F6	48		310	5.0
F7			270	4.3
G8	64		190	4.1
N5	48	0.0486	440	5.2
N6			340	4.0
07	64		270	4.2

CLS

Treatment of light quarks

$N_f = 2$ sea Wilson quarks

 $Lm_{\pi} \geq 4.0$

• Light quark mass chiral extrapolation:

 $(190 \lesssim m_\pi \lesssim 450) \text{ MeV}$

- Discretization effects:
 - 3 lattice spacings a

0.048, 0.065, 0.075 fm

- NP renormalization
- NP O(a) improvement

CLS

Treatment of *b* quark

 $m_b \gg \Lambda_{QCD}$: *b* treated in HQET

expansion in 1 / m_b

$$\begin{split} \mathcal{L}_{\text{HQET}}(x) &= \mathcal{L}_{h}^{\text{stat}} - \omega_{\text{kin}} \mathcal{O}_{\text{kin}}(x) - \omega_{\text{spin}} \mathcal{O}_{\text{spin}}(x) \\ &= \overline{\psi}_{h}(x) \, \mathcal{D}_{0} \, \psi_{h}(x) - \omega_{\text{kin}} \overline{\psi}_{h}(x) \mathbf{D}^{2} \psi_{h}(x) - \omega_{\text{spin}} \overline{\psi}_{h}(x) \sigma \cdot \mathbf{B} \psi_{h}(x) \end{split}$$

- restrict to processes such that p << m_b
- power divergences in $a^{-1} \Rightarrow \underline{\text{need}}$ NP renormalization

[Maiani, Martinelli, Sachrajda 92]

• renormalizable at every order in $1/m_b$ \Rightarrow safe estimate of discretization effects

$$\begin{split} \langle \mathcal{O} \rangle &= \langle \mathcal{O} \rangle_{stat} + \omega_{kin} \sum_{x} \langle \mathcal{O} \mathcal{O}_{kin}(x) \rangle_{stat} + \omega_{spin} \sum_{x} \langle \mathcal{O} \mathcal{O}_{spin}(x) \rangle_{stat} \\ \langle \mathcal{O} \rangle_{stat} &= \frac{1}{\mathcal{Z}} \int_{fields} \mathcal{O} \exp\left(-a^{4} \sum_{x} [\mathcal{L}_{light} + \mathcal{L}_{h}^{stat}]\right) \end{split}$$

ALPHA strategy for NP renormalization & matching

[[]Blossier et al. 12]

• match QCD and HQET at $a^{-1} \gg M_b$ small volume, however $z = LM_b \gg 1$

determine NP: $\vec{\omega}(z) = m_{\text{bare}}(z)$, $Z_{\text{A}}^{\text{HQET}}(z)$, $c_{\text{A}}^{(1)}(z)$, $\omega_{\text{kin}}(z)$, $\omega_{\text{spin}}(z)$

- step scaling to a used in large volumes
- \Rightarrow determine *M_b* dependence of large volume observables

The b-quark's mass

Observables in HQET

• interpolate $\vec{\omega}(z)$ to get $\vec{\omega}(z_b)$

2 compute matrix elements in HQET

$$\rho^{stat} = \lim_{x_0 \to \infty} \{ 2e^{E_{stat}x_0} \sum_{\vec{x}} \langle A_0(x)A_0(0) \rangle \}^{1/2} \quad E_{stat} = -\lim_{x_0 \to \infty} \partial_0 \ln \sum_{\vec{x}} \langle A_0(x)A_0(0) \rangle$$

...

Some matrix elements and $\vec{\omega}(z_b)$

$$\begin{aligned} \ln(f_{\rm B}\sqrt{m_{\rm B}/2}) &= \ln(Z_{\rm A}^{\rm HQET}) + \ln(p^{\rm stat}) + b_{\rm A}^{\rm stat} a m_{\rm PCAC}^{\prime} \\ &+ \omega_{\rm kin} p^{\rm kin} + \omega_{\rm spin} p^{\rm spin} + c_{\rm A}^{(1)} p^{\rm A^{(1)}} \end{aligned}$$

. . .

$$\begin{split} A_{0,R}^{HQET} &= Z_A^{HQET} \left[A_0^{stat} + c_A^{(1)} A_0^{(1)} \right], \qquad A_0^{stat} = \overline{\psi}_l \, \gamma_0 \gamma_5 \, \psi_h \,, \\ A_0^{(1)} &= \overline{\psi}_l \, \gamma_5 \gamma_i \frac{1}{2} (\nabla_i^S - \overleftarrow{\nabla}_i^S) \, \psi_h \end{split}$$

Treatment of the excited states

- GEVP with 3 light quark wavefunctions (levels of smearing)
- plateau average only where excited states contribution negligible

 $\sigma_{sys}(t_{min}) \ll \sigma_{stat}(t_{min})$

Statistical analysis

Use methods described in: [Schaefer et al. 10]

- all correlations taken into account (eg with $a, \vec{\omega}(z), m_{\pi}, f_{\pi}$)
- for an observable \mathcal{O} : $\delta \mathcal{O} \propto \tau_{int} = \frac{1}{2} + \sum_{1}^{\infty} \rho_{\mathcal{O}}(t)$
- in practice restrict sum up to W, but $\rho_{\mathcal{O}}(t) \xrightarrow{t \to \infty} A_{\mathcal{O}} e^{-t/\tau_{exp}}$

- typically $W < \tau_{exp}$
- $\bullet\,$ attach a tail to $\rho_{\mathcal{O}}$

$$\begin{aligned} \tau_{int}^{\boldsymbol{u}}(\mathcal{O}) &= \tau_{int}(\mathcal{O}, \boldsymbol{W}_{\boldsymbol{u}}) \\ &+ \tau_{exp} \, \rho_{\mathcal{O}}(\boldsymbol{W}_{\boldsymbol{u}}) \end{aligned}$$

Results: *f*_B

$$f_B \sqrt{m_B} = A \left(1 + \frac{3 + 9\hat{g}^2}{8} (\tilde{y}_1 \ln \tilde{y}_1(PS) - \tilde{y}_1 \ln \tilde{y}_1(\pi)) \right) + B \left(\tilde{y}_1(PS) - \tilde{y}_1(\pi) \right) + C_{HYPn} a^2$$

- continuum and chiral extrapolation (NLO HMChPT):
- \Rightarrow error from $a \rightarrow 0$ in stat

•
$$\tilde{y}_1(PS) = \frac{m_{PS}^2}{16\pi^2 f_{PS}^2}$$

 ChPT: NLO vs. linear extrapolation

12/21

tiny cutoff effects

$$f_B = 187(12)_{stat}(2)_{ChPT}$$
 MeV

HYP1 open symbols / dashed lines HYP2 filled symbols / dash-dotted lines F. Bernardoni (NIC, DESY (Zeuthen)) B-physics with Nf=2 Wilson fermions July 30, 2013 Results: f_{Bs}

$$f_{B_s}\sqrt{m_{B_s}} = A + B\left(\tilde{y}_1(PS) - \tilde{y}_1(\pi)\right) + C_{HYPn}a^2$$

$$D_{\rm S} = -1(10)3$$

B-physics with Nf=2 Wilson fermions

Results: f_{B_s}/f_B

$$\frac{f_{B_{s}}\sqrt{m_{B_{s}}}}{f_{B}\sqrt{m_{B}}} = A\left(1 - \frac{3 + 9\hat{g}^{2}}{8}(\tilde{y}_{1}\ln\tilde{y}_{1}(PS) - \tilde{y}_{1}\ln\tilde{y}_{1}(\pi))\right) + B\left(\tilde{y}_{1}(PS) - \tilde{y}_{1}(\pi)\right) + C_{HYPn}a^{2}$$

- ChPT: NLO vs. linear extrapolation
- less statistics wrt f_B
- small cutoff effects

$$f_{B_s}/f_B = 1.195(61)_{stat}(20)_{ChPT}$$

Results: $m_{B_s} - m_B$

$$m_{B_{s}} - m_{B} - \frac{9\hat{g}^{2}}{128\pi} \left(\frac{m_{PS}^{3}}{f_{PS}^{2}} - \frac{m_{\pi}^{3}}{f_{\pi}^{2}}\right) = A + B\left(\tilde{y}_{1}(PS) - \tilde{y}_{1}(\pi)\right) + C_{HYPn}a^{2}$$

$$= ChPT: NLO vs. \ linear extrapolation$$

$$= a: \ fit \ with \ or \ without \ \beta = 5.5$$

$$m_{B_{s}} - m_{B} = 83.9(6.3)_{stat}(6.9)_{ChPT}(0.8)_{a} \ MeV$$

Results: $m_{B^*} - m_B$

$$m_{B^*} - m_B = A + B\left(\tilde{y}_1(PS) - \tilde{y}_1(\pi)\right) + C_{HYPn}a$$

$$m_{B^*} - m_B = 41.7(4.7)_{stat}(3.4)_a$$
 MeV

Results: $m_{B_s^*} - m_{B_s}$

$$m_{B_s^*} - m_{B_s} = A + B\left(\tilde{y}_1(PS) - \tilde{y}_1(\pi)\right) + C_{HYPn}a$$

 $m_{B_s^*} - m_{B_s} = 37.9(3.7)_{stat}(5.9)_a$ MeV

B-physics with Nf=2 Wilson fermions

Comparison with experimental results: postdictions

Observable	ALPHA	Exp.	Method
m _B [MeV]	input	5279.5	e^+e^- scat.
$m_b^{\overline{MS}}(m_b)$ [GeV]	4.23(11)(3) _z	4.18(3)	smeared $\sigma(e^+e^- ightarrow b\overline{b})$ + PT
$m_{B_s} - m_B [{ m MeV}]$	83.9(6.3)(6.9) _a	87.35(0.23)	<i>pp</i> , <i>p</i> p scat.
<i>m_{B*} - m_B</i> [MeV]	41.7(4.7)(3.4) _a	45.3(0.8)	e^+e^- scat.
$m_{B_s^*} - m_{B_s}$ [MeV]	37.9(3.7)(5.9) _a	48.7(2.3)	e^+e^- scat.

- reproducing well known experimental results is a reason to be confident in our method
- systematics still relevant for some quantities

Comparison with Lattice averages: predictions

Obs.	ALPHA	Lat. Av. ¹	Experiment
f _B [MeV]	187(12)(2) _{ChPT}	190.6(4.7)	$BR(B ightarrow au u)_{ALPHA} = 1.065(21) imes 10^{-4}$
			$BR(B ightarrow au u)_{exp} = 1.05(25) imes 10^{-4}$
f _{Bs} [MeV]	224(13)	227.6(5.0)	$BR(B_{s} ightarrow\mu^{+}\mu^{-})_{ALPHA}=3.15(27) imes10^{-9}$
			$BR(B_s ightarrow \mu^+\mu^-)_{exp} = 2.9(0.7) imes 10^{-9}$
f_{B_s}/f_B	1.195(61)(20) _{ChPT}	1.201(17)	

- $BR(B \rightarrow \tau \nu)_{ALPHA}$ uses $|V_{ub}|$ from PDG 12 (inclusive decays, $BR(B \rightarrow \pi l \nu)$)
- $BR(B_s \rightarrow \mu^+ \mu^-)_{ALPHA}$ uses $|V_{tb}^* V_{ts}|$ from CKM fit (mainly B_s^0 splitting)
- agreement with Lattice Averages
- agreement with Experiment

F. Bernardoni (NIC, DESY (Zeuthen))

¹www.latticeaverages.org

Partial contributions to the total error for z_b

Partial contributions to the total error for f_B

