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Why we compute the B → π form factor on the Lattice

A precise determination of  Vub allows a strong test of the standard model 

The constraint on the apex            of the 
CKM triangle from |Vub| will strengthen tests 
of the Standard-Model CKM framework.

|Vub|
|Vcb|

=
�

1� �2/2

p
⇢̄2 + ⌘̄2

(⇢̄, ⌘̄)

• λ = |Vud| known to ~ 1 %   　•  |Vcb| known to ~2 %

• ~3σ discrepancy between exclusive (B→πlν) and inclusive (B→Xulν) determination.

• BR(B→τν) leads to larger |Vub| which disagrees with an average of |Vub|excl and |Vub|incl 
by more than 2σ.  ( although the most recent Belle hadronic tagging measurement is 2σ 
lower than the previous experimental average and in better agreement with other 
determinations of |Vub| )

J. Laiho, E. Lunghi, and R. S. Van de Water, Phys. Rev. D81, 034503 (2010)

E. Lunghi and A. Soni, Phys.Lett. B697, 323 (2011) 2
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Dominant error (orange ring) comes 
from the uncertainty of |Vub|.

There has been a long standing puzzle in the determination of |Vub|

~7% inclusive / ~10% exclusive



q2 = mB2 + mπ2 - 2mBEπ 

f+(q2) is crucial for the determination of the CKM matrix element  |Vub|

d�

dq2
=

G2
F

192⇡3m3
B

⇥
(m2

B +m2
⇡ � q2)2 � 4m2

Bm
2
⇡

⇤3/2 ⇥ |f+(q2)|2 ⇥ |Vub|2

Experiment Known factor Hadronic part CKM matrix 

Goal

•Experiment can only measure the CKM matrix element times hadronic form factor.
•The hadronic form factor must be computed nonperturbatively via lattice QCD.

•The exclusive B → πlν semileptonic decay allows the determination of |Vub| via:

Why we compute the B → π form factor on the Lattice
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• Non-perturbative form factors f+(q2) and f0(q2) parametrize the hadronic matrix 
element of the b → u quark flavor-changing vector current Vµ . 

• On the lattice, we calculate the form factors f|| and f⊥ .
   ▶ Proportional to vector current matrix elements in the B-meson rest frame:

   ▶ Easy to relate to the desired form factor f+(q2) and f0(q2).

fk(E⇡) = h⇡|V0|Bi/
p
2mB

f?(E⇡)pi = h⇡|Vi|Bi/
p
2mB

f0(q
2) =

�
2mB

m2
B � m2

�

�
(mB � E�)f�(E�) + (E2

� � m2
�)f�(E�)

�

f+(q2) =
1�

2mB

�
f�(E�) + (mB � E�)f�(E�)

�
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How to calculate f+/0 (q2) from Lattice QCD

��|Vµ|B� = f+(q2)

�
pµ

B + pµ
� � m2

B � m2
�

q2
qµ

�
+ f0(q

2)
m2

B � m2
�

q2
qµ



Lattice action and parameters

•We use the 2+1 flavor dynamical domain-wall fermion gauge field configurations 
generated by the RBC/UKQCD Collaborations.

C. Allton et al. (RBC-UKQCD), Phys. Rev. D78, 114509 (2008) 
Y. Aoki et al. (RBC/UKQCD Collaboration), Phys.Rev. D83, 074508 (2011)

 L×T a [fm] mud
sea ms

sea mπ
sea [MeV] # of configs. # of sources

32 × 64 ≈ 0.08 0.004 0.030 289 628 2

32 × 64 ≈ 0.08 0.006 0.030 345 445 2

32 × 64 ≈ 0.08 0.008 0.030 394 544 2

24 × 64 ≈ 0.11 0.005 0.040 329 1636 1

24 × 64 ≈ 0.11 0.010 0.040 422 1419 1

Fine 
Lattice

Coarse 
Lattice
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• For the b-quark we use the relativistic heavy quark (RHQ) action developed 
by Li, Lin, and Christ in Refs. N. H. Christ, M. Li, and H.-W. Lin, Phys.Rev. D76, 074505 (2007)

                                                 H.-W. Lin and N. Christ, Phys.Rev. D76, 074506 (2007)

• We use the nonperturbative determinations of the parameters of the RHQ action 
obtained in Y.Aoki et. al Phys. Rev. D 86, 116003 (2012).



How to calculate f+/0 (q2) from Lattice QCD

RB!⇡
3,µ (t, T ) =

CB!⇡
3,µ (t, T )

p
C⇡

2 (t)CB
2 (T � t)

r
2E⇡

0

e�E⇡
0 te�mB

0 t

f lat
k = lim

t,T!1
RB!⇡

0 (t, T )

f lat
? = lim

t,T!1

1

pi⇡
RB!⇡

i (t, T )

pπ ≠ 0 pB = 0

• Extract the lattice form factor from the ratio of the 3pt function to 2pt functions:

Gaussian-smeared 
sequential source 

Relativistic heavy quark action The 2+1 flavor dynamical domain-wall 
fermion gauge field configurations

J. A. Bailey et al. (MILC Collaborations), Phys. Rev. D79, 054507 (2009).

Domain wall fermion action
O(a) improved vector 
current operator 
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The ratio of 3pt over 2pt functions

• After a careful study of source-sink separations, we use T = tB − tπ  = 20.

• We fit the ratio to a plateau in the region 0 ≪ t ≪ T.

• The fit range is chosen such that the individual pion and B-meson 2-points 
have decayed to the ground state and the correlated constant fit has a good 
χ2/d.o.f. 
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Figure 35: The ratio of 3pt to 2pt function R

0

(left) and Ri (right) on theml = 0.005 243 ensemble with
{m

0

a, cSW , ⇣} = {8.45, 5.80, 3.10}. Source-sink separation is T = 20. Shaded band show statistical
error and fitting range.

Table 27: Fit results for the ratio of 3pt to 2pt function R

0

and Ri with higher derivative operator
O

1

±O
2

and O
3

±O
4

on the ml = 0.005 243 ensemble with {m
0

a, cSW , ⇣} = {8.45, 5.80, 3.10}.
unimproved improved

(pL
2⇡ )

2 fit range R

3,µ
�2

d.o.f.

p-value fit range R

imp

3,µ
�2

d.o.f.

p-value
R3,µ�Rimp

3,µ

R3,µ

temporal 0 [6:10] 0.4222(60) 1.50 20% [6:10] 0.4454(63) 1.57 18% 5.5%
1 [6:10] 0.3424(88) 0.12 98% [6:10] 0.3593(92) 0.16 96% 4.9%
2 [6:10] 0.307(16) 0.28 89% [6:10] 0.321(16) 0.38 83% 4.6%
3 [6:10] 0.262(29) 0.57 68% [6:10] 0.273(30) 0.63 64% 4.2%

spatial 1 [6:10] 0.1600(46) 1.00 41% [6:10] 0.1619(47) 1.19 31% 1.2%
2 [6:10] 0.1216(67) 1.68 15% [6:10] 0.1233(69) 1.72 14% 1.4%
3 [6:10] 0.110(11) 0.68 60% [6:10] 0.113(12) 0.61 66% 2.7%

I have done two type of analysis: i) fitting the data of each improvement terms ! combining all
expectation values of improvement terms. ii) combining all data of improvement terms ! fitting the
data.

Table 28: Comparison betwe
analysis i analysis ii

(aE⇡)2 fk f? fk f?
0.035944 1.227(18) 1.227(18)
0.104483 0.990(25) 1.657(48) 0.990(25) 1.655(48)
0.173022 0.886(45) 1.259(70) 0.885(45) 1.260(70)
0.241561 0.753(83) 1.15(12) 0.751(83) 1.15(12)

42

7



• The continuum form factors are given by

Form factors  f||  and  f⊥

compute 
nonperturbatively

compute with 1-loop lattice 
perturbation theory

[See talk by C.Lehner 14:40~]

•ZVll  obtained by the RBC/UKQCD collaborations by exploiting the fact ZA=ZV  for 
domain-wall fermions.

•ZVbb obtained from the matrix element of the b→b vector current between two Bs 
mesons.

•  We calculate the heavy-light current renormalization factor ZVbl using the mostly 
nonperturbative method. A. X. El-Khadra et al.  Phys.Rev. D64, 014502 (2001) 

Y. Aoki et al. (RBC/UKQCD Collaboration), Phys.Rev. D83, 074508 (2011) 

f�(E�) = Zbl
Vi

lim
t,T��

1

pi
�

RB��
3,i (E�, t, T )

f�(E�) = Zbl
V0

lim
t,T��

RB��
3,0 (E�, t, T )

≈1

Zbl
Vµ

= �bl
Vµ

�
Zbb

V Zll
V



Chiral-continuum extrapolated  f||  and  f⊥

0.0

1.0

2.0

3.0

4.0

 0  0.05  0.1  0.15  0.2  0.25  0.3

a 24
-1

/2
 f ⊥

 

( a24Eπ
 )2

χ2/d.o.f. = 0.89,   p-value = 55%

ml / ms = 0.005/0.04  coarse
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chiral-continuum  f⊥ 
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Black curves show chiral-continuum extrapolated f|| and  f⊥ with statistical errors.

 The function δf  indicate non-analytic “log” functions of the pseudoscalar meson masses.

• Correlated simultaneous chiral-continuum fit (mπ → mπphys, a → 0 )
-  to f⊥ data using NLO SU(2) HMχPT

-  to f|| data using NLO SU(2) HMχPT plus NNLO analytic terms to interpolate in Eπ2

f�(ml, E�, a2) = c(0)
�

�
1 + �f� + c(1)

� ml + c(2)
� E� + c(3)

� E2
� + c(4)

� a2

+c(5)
� mlE� + c(6)

� mlE
2
� + c(7)

� E3
�

�

f�(ml, E�, a2) =
1

E� + �
c(0)
�

�
1 + �f� + c(1)

� m2
l + c(2)

� E� + c(3)
� E2

� + c(4)
� a2

�

NNLO

D. Bećirević et al, Phys. Rev. D 68, 074003 (2003)
ETM Collaboration, arXiv:1104.0869
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Form factors  f+  and  f0
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• The form factors f+  and  f0  are easily obtained from f||  and  f⊥.

q2 = m2
B + m2

� � 2mBE�
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- By definition, the form factors satisfy the kinematic constraint  f+(q2 = 0) = f0(q2 = 0).

• We must extrapolate the lattice data to lower q2 (larger Eπ2 ) to reach the 
kinematic region where experimental measurements are most precise.

• Using chiral-continuum extrapolated lattice data,  in the range of simulated pion energies,  
we generate four synthetic data points of  f+  and  f0 (black) used in q2 extrapolation to 
full kinematic range.

Preliminary



z-expansion of  f+  and  f0

•Consider mapping the variable q2 onto a new variable z. z =

�
t+ � q2 �

�
t+ � t0�

t+ � q2 +
�

t+ � t0

t± = (mB ± m�)2
semileptonic region 
  0 < q2 < t−  →  −0.34<z<0.22  (when we choose t0 = 0.65t+ )

•The form factor f (q2) is analytic in the semileptonic region except at B* pole. 
→ f (q2) can be expressed as convergent power series.

f(q2) =
1

P (q2)�(q2, t0)

��

k=0

a(k)(t0)z(q2, t0)
k

contains subthreshold poles Arbitrary analytic function which affects the 
numerical values of the series coefficients

•The sum of the series coefficients is bounded by unitarity.

•Therefore this bound combined with the small |z| ensures that only a small number of 
terms is needed to accurately describe the shape of the form factor.

N�

k=0

a(k)2 � 1

Boyd, Grinstein, Lebed, Phys.Rev.Lett. 74 (1995) 4603

 We employ the model-independent z-expansion fit to extrapolate to low momentum transfer.
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z-expansion of  f+  and  f0

•The resulting slope and curvature of the lattice data of the B → πlν form factor are 
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f+ (q2 = 0) =  f0 (q2 = 0)

a+(1) / a+(0) = - 1.66 ± 0.70
a+(2) / a+(0) = - 6.0 ± 1.5 a+(1) / a+(0) = - 1.60 ± 0.26

cf.  The slope of the BABAR experiment

•We show z-expansion fits imposing the kinematic constraint  f+(q2 = 0) = f0(q2 = 0).

•Our z-fit includes terms up to z2.

Phys. Rev. D79, 054507 (2009)
12

P�f = a(0) + a(1)z + a(2)z2

Preliminary
Preliminary
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our synthetic data
Fermilab/MILC
HPQCD

• Two calculations of the B→πlν form factor using MILC gauge configurations 
that include 2+1 flavors of dynamical improved staggered quarks.

‣ Fermilab/MILC collaboration uses relativistic (Fermilab) b-quarks.

‣ HPQCD collaboration uses nonrelativistic (NRQCD) b-quarks.
Phys. Rev. D73, 074502 (2006), 
Erratum-ibid.D75:119906 (2007)

Phys. Rev. D79, 054507 (2009)

Comparison with other calculations

Our errors are only statistical error.
Others are combined statistical and 
chiral extrapolation errors.
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Conclusions and future prospects
• We have calculated the B → π form factors f||  and  f⊥  using 2+1 flavor dynamical 

domain-wall fermion gauge field configurations with relativistic heavy quark action 
on fine (243×64, a~0.11fm) lattice and coarse (323×64, a~0.08fm) lattice.

• Perform the simultaneous chiral-continuum extrapolation to all data of f||  and  f⊥ 
using SU(2) HMχPT formula.

•Perform the z-expansion fits with kinematic constraint  f+= f0 at q2 = 0 in order to 
extrapolate to low momentum transfer (high Eπ2 ).

• Will provide important independent check on existing calculations using staggered 
light quarks.

Work still in progress: 

• Include partially quenched data points in our analysis.

•Estimate the systematic uncertainties in f+  and  f0 .

•Compare with experimental data from Babar and Belle in order to obtain |Vub|.

•Perform q2 extrapolation using alternative z-parameterization from Bourrely, 
Caprini, and Lellouch [Phys.Rev. D79 (2009) 013008, Erratum-ibid. D82 (2010) 099902 ]
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Backup slides
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Dispersion relation and amplitude Zπ

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 0  0.05  0.1  0.15  0.2

E2 /(m
2  +

 p
2 )  

[la
tti

ce
 u

ni
t]

p2=(2πn/L)2   [lattice unit]

 0.6

 0.8

 1

 1.2

 1.4

 0  0.05  0.1  0.15  0.2

|Z
(p

)| 
/ |

Z(
0)

|  
[la

tti
ce

 u
ni

t]

p2=(2πn/L)2   [lattice unit]

• The pion energies satisfy the continuum dispersion relation:

• The pion amplitude                               is independent of momentum 

E2
⇡ = |~p⇡|2 +m2

⇡

Z⇡ = |h0|O⇡|⇡i|

Z⇡(E) = lim
t!1

�
C⇡

2 (t)⇥ 2EeEt
 1

2
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O(a) improved vector current operator

Vµ,0(x) = q̄(x)Oµ,0Q(x), Oµ,0 = �µ

The heavy-light current operator at tree level is 

Four single derivative operators are needed for O(a) improvement.

O1,µ = 2
��
Dµ

O2,µ = 2
��
Dµ

O3,µ = 2�µ�i
��
D i

O4,µ = 2�µ�i
��
D i

Oimp
0 = O0,0 + cV0

3 O0,3 + cV0
4 O0,4

Oimp
i = Oi,0 + cVi

1 Oi,1 + cVi
2 Oi,2 + cVi

3 Oi,3 + cVi
4 Oi,4

The O(a) improved vector current operator is given by

temporal (µ = 0):

spatial (µ = i):

Coefficients are determined by 1-loop lattice perturbation theory.

[See talk by C.Lehner 14:40~]
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Relativistic heavy quark action for b-quarks

• The Fermilab group showed that you can remove all errors of O((ma)n) by 
appropriately tuning the parameters of the anisotropic clover action

• Errors are of O(a2p2).

•  Li, Lin, and Christ showed that the parameters {m0, ζ, cP} can be tuned 
nonperturbatively.

• We use the results for the parameters of the RHQ action obtained for b-quarks in 
Y. Aoki et. al Phys. Rev. D 86, 116003 (2012)

Heavy quark mass introduces discretization errors of O((ma)n).
 - At bottom quark mass, it becomes severe: mb ~ 4 GeV and 1/a ~ 2 GeV, then mba > O(1).

SRHQ =
X

n,n0

 ̄n

(
m0 + �0D0 �

aD2
0

2
+ ⇣

"
~� · ~D � a ~D2

2

#
� a

X

µ⌫

icP
4
�µ⌫Fµ⌫

)

n,n0

 0
n

Relativistic heavy quark action (RHQ action)

  A. X. El-Khadra, A. S. Kronfeld and P. B. Mackenzie, Phys. Rev. D55, 3933 (1997)

 N. H. Christ, M. Li, and H.-W. Lin, Phys.Rev. D76, 074505 (2007)
 H.-W. Lin and N. Christ, Phys.Rev. D76, 074506 (2007)
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Renormalization factor ZVbb

2.4 The flavor-conserving renormalization factor ZV hh

The flavor-conserving renormalization factor Z

bb
V can be determined by a ratio of B ! B 3pt

function to single B meson 2pt function as follow.

Z

bb
V ⇥ hmB

0

|V bb
0

|mB
0

i = 2mB (18)

C

B
2

(T )

C

B!B
3,µ (t, T )

t,T!1�����! Z

bb
V (19)

where

C

B
2

(t) =
X

n

Z

B
n

src

Z

B
n

⇤
sink

e

�mB
n t

2mB
n

(20)

C

B!B
3,µ (t, T ) =

X

m,n

Z

B
m

src

2mB
m

hmB
m|Vµ|mB

n i
Z

B⇤
n

sink

2mB
n

e

�mB
mt

e

�mB
n (T�t) (21)

The use of the heavier spectator quark significantly reduces the statistical uncertainty because
ZV hh is independent of spectator mass. Here Bs meson is empolyed to obtain the ZV hh insted of B
meson.

2.4.1 Bs meson

Table 8: folded 2pt Bs meson and unfolded 2pt Bs meson
l2464f21b213m005m040 m0.0343

Smeared source - point sink

Folding Unfolding

n2

fitting range �2/d.o.f p-value fitting range �2/d.o.f p-value

0 [10:25] 3.1025(12) 0.41 98% [10:25] 3.1040(18) 0.76 73%

Smeared source - point sink

0 [6:20] 3.1037(13) 1.03 42% [6:20] 3.1057(18) 1.24 24%
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At tree level, the expression of ZVbb is given by

2.4.2 ZV hh

The expression for Zbb
V and Z

ll
V at tree level is given by

Z

bb
V = u

0

exp(M
1

), M

1

= log[1 + m̃

0

], m̃

0

=
m

0

u

0

� (1 + 3⇣)(1� 1

u

0

) (22)

Z

ll
V =

u

0

1� !̃

2

, !̃ = 1� [M
5

� 4(1� u

0

)] (23)

where the values from this simulation is m
0

= 7.80, ⇣ = 3.20 and u

0

= 0.8757. As a result,

m̃

0

= 10.412 (24)

Z

bb
V = 9.993 (25)

Below are results for ZV hh with folded/unfolded Bs meson. As shown in results, unfolded Bs meson
su�ciently reduces the statistical uncertainty of ZV hh since noise cancellation would exist in the ratio
of 3pt to 2pt.j

Table 9: The results of ZV hh with folded Bs meson and unfolded Bs meson: For unfolding case, The
several fitting ranges are tried to find out un optimal one. The fitting range should be ended at t = 11,
because there is a jump at t = 12 in the data of ZV hh

l2464f21b213m005m040 m0.0343

Smeared source - point sink

Folding Unfolding

n2

fitting range �2/d.o.f p-value fitting range �2/d.o.f p-value

0 [6:11] 10.28(31) 1.21 30% [6:11] 9.966(46) 1.22 29%

[7:11] 9.979(48) 1.28 27%

[6:12] 9.993(45) 1.94 7%

[6:14] 9.982(43) 1.74 8%
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Figure 13: ZV hh with folded Bs meson and unfolded Bs meson
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Here  m0 = 7.80,  ζ = 3.20,  u0 = 0.8757 .

Table 5: Fit results for the ratio of 3pt to 2pt function R

0

and Ri with higher derivative operator
O

1

±O
2

and O
3

±O
4

on the ml = 0.005 243 ensemble with {m
0

a, cSW , ⇣} = {8.45, 5.80, 3.10}.
Temporal Spatial

Operator (pL
2⇡ )

2 fit range R

3,0
�2

d.o.f.

p-value fit range R

3,i
�2

d.o.f.

p-value
O

0

0 [6:10] 0.4222(60) 1.50 20%
1 [6:10] 0.3424(88) 0.12 98% [6:10] 0.1600(46) 1.00 41%
2 [6:10] 0.307(16) 0.28 89% [6:10] 0.1216(67) 1.68 15%
3 [6:10] 0.262(29) 0.57 68% [6:10] 0.110(11) 0.68 60%

O
1

+O
2

0 [6:10] 0.3990(56) 1.40 23%
1 [6:10] 0.2296(61) 0.07 99% [6:10] -0.0467(23) 1.60 17%
2 [6:10] 0.1491(92) 0.20 94% [6:10] -0.0579(33) 1.46 21%
3 [6:10] 0.077(16) 0.80 53% [6:10] -0.0528(61) 1.11 35%

O
1

�O
2

0 [6:10] 5.351(75) 1.80 12%
1 [6:10] 4.24(11) 0.44 78% [6:10] -0.1230(38) 1.15 33%
2 [6:10] 3.74(18) 0.77 54% [6:10] -0.0954(67) 0.42 79%
3 [6:10] 3.18(33) 0.77 54% [6:10] -0.080(12) 0.21 93%

O
3

+O
4

0 [6:10] -0.3564(50) 1.55 19%
1 [6:10] -0.2016(55) 0.23 92% [6:10] 0.0236(20) 1.84 12%
2 [6:10] -0.1275(82) 0.62 65% [6:10] -0.0027(26) 1.98 9%
3 [6:10] -0.052(15) 1.20 31% [6:10] -0.0194(56) 0.27 90%

O
3

�O
4

0 [6:10] 0.3564(50) 1.55 19%
1 [6:10] 0.2682(66) 0.43 79% [6:10] -0.1934(50) 1.01 40%
2 [6:10] 0.232(12) 0.68 61% [6:10] -0.1496(76) 1.06 37%
3 [6:10] 0.192(23) 1.37 24% [6:10] -0.115(14) 0.29 89%

improved 0 0.4456(64)
1 0.3594(92) 0.1621(47)
2 0.322(16) 0.1232(68)
3 0.273(30) 0.112(12)

4.1.4 Renormalization factor Z
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SMEARED-SMEARED      [7:19]  3.1025(14)   p-val = 43%
SMEARED-POINT             [10:19]  3.1020(12)   p-val = 92%
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Figure 7: (left) E↵ective mass for Bs meson and (right) Zvhh on the ml = 0.005 243 ensemble with
{m

0

a, cSW , ⇣} = {8.45, 5.80, 3.10}. Shaded band show statistical error and fitting range.
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NP : Zbb
V = 10.037(34)

tree level : Zbb
V = 9.993
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