On one-loop corrections to matching conditions of Lattice HQET including $1/m_b$ terms

Piotr Korcyl

for ALPHA collaboration
NIC, DESY (Zeuthen)

31st International Symposium on Lattice Field Theory
30 July 2013

in collaboration with R. Sommer.
Motivations

Lattice calculations enter in two estimations of V_{ub}

For processes with $b \to u$ transitions $\Gamma \sim |V_{ub}|^2$:
- exclusive semi-leptonic $B \to \pi l \nu$ (involves $f_+(q^2)$)
- exclusive leptonic $B \to \tau \nu$ (involves f_B)

\Rightarrow high precision lattice calculations needed.

Hierarchy of scales

- $L > 4/m_\pi \approx 6\ \text{fm}$ to suppress finite-size effects for light quarks
- $a < (2m_B)^{-1}$ to control discretization errors for the heavy quark

\Rightarrow solution: HQET on the lattice.
HQET at order \(\Lambda_{QCD}/m_b \)

\[
\mathcal{L}_{HQET} = \mathcal{L}_{stat} + \mathcal{O}(1) \omega_{\text{kin}} \mathcal{L}_{\text{kin}} + \mathcal{O}(1/m) \omega_{\text{spin}} \mathcal{L}_{\text{spin}}
\]

with \(\mathcal{L}_{stat} = \bar{\psi}_h D_0 \psi_h \).

HQET operators: Example of \(A_0 \)

\[
Z_{A_0}^{QCD} (A_i^{QCD})_0 = Z_{A_0}^{QCD} \left[\bar{\psi}_I \gamma_0 \gamma_5 \psi_b \right]
\]

\[
\downarrow
\]

\[
Z_{A_0}^{HQET} (A_i^{HQET})_0 = Z_{A_0}^{HQET} \left[\bar{\psi}_I \gamma_0 \gamma_5 \psi_h + a c_{A_{0,1}} \bar{\psi}_I \gamma_5 \psi^k (\nabla^S_k - \bar{\nabla}^S_k) \psi_h + a c_{A_{0,2}} \bar{\psi}_I \gamma_5 \psi^k (\nabla^S_k + \bar{\nabla}^S_k) \psi_h + \ldots \right]
\]

\[\Rightarrow\] in total 19 HQET parameters are needed.
Finite volume scheme

In order to match HQET and QCD:

- we use a set of observables \(\{\phi_i\} \) defined in a finite volume,
- we evaluate them in QCD and HQET to obtain \(\{\phi_i^{\text{QCD}}(L, z = mL, a)\} \) and \(\{\phi_i^{\text{HQET}}(L, a)\} \),
- by equating the corresponding quantities

\[
\phi_i^{\text{QCD}}(L, z = mL, a = 0) \overset{!}{=} \phi_i^{\text{HQET}}(L, a) = \eta(L, a)_i + \varphi(L, a)_{ij} \omega_j(z, a)
\]

we can extract the HQET parameters \(\omega_j(z, a) \).

\[\Rightarrow\] non-perturbative definition (matching) and evolution of HQET parameters
One-loop lattice perturbation theory for HQET

Why?

Any HQET quantity is a truncated expansion in $1/z$ of the corresponding QCD quantity, hence one would like to make sure that matching doesn’t introduce artificially large $1/z^2$ corrections

- already checked at tree-level in \bar{g}^2
- in this work: verification at one-loop

How?

PASTOR [written by D. Hesse]: automatic tool for generation and calculation of lattice Feynman diagrams in the Schrödinger functional framework.

input: discretized action, correlation function, L/a, $z = \bar{m}L$, a

output: Feynman rules, Feynman diagrams, numerical contributions of each diagram
Schrödinger functional correlation functions

- boundary-to-boundary: \(F_1(\theta) = \sum_{u,v,y,z} \langle \bar{\zeta}'(u) \gamma_5 \zeta_h(v) \bar{\zeta}_h(y) \gamma_5 \zeta_l(z) \rangle \)

- current insertions: \(f_{A_0}(\theta, x_0) = \sum_{u,v} \langle \bar{\zeta}_h(u) \gamma_5 \zeta_l(v) A_0(x_0) \rangle \)

Additional parameters: \(\psi_h(x + L \hat{k}) = e^{i\theta_k} \psi_h(x) \), \(\psi_l(x + L \hat{k}) = e^{i\theta_k} \psi_l(x) \).

Observable for \(c_{A_0,2} \)

\[
\phi_{QCD}^5 = \log \frac{f_{A_0}(\theta^i_1 = \theta_1, \theta^i_h = \theta_2)}{f_{A_0}(\theta^i_1 = \theta_1, \theta^i_h = \theta_3)}
\]
Continuum extrapolations of ϕ_{QCD}^5 at one loop

$\phi_{QCD}^5(a,z)$ at one loop

Naive expectation: tree-level $\sim 1/z \rightarrow$ one-loop $\sim \frac{1}{4\pi} \frac{1}{z}$.

$z=5$
$z=7$
$z=9$
$z=11$
The generic structure of a matching condition for an observable which doesn’t need to be renormalized is
\[
\phi^{\text{QCD}}(z, a = 0) = \phi^{\text{stat}} + \sum_t \omega_t(z) \phi_t^{1/m} + \mathcal{O}(1/z^2).
\]

The \(z\)-dependence of the one-loop correction can be studied using
\((\hat{\omega}_t = \bar{m}\omega_t, \hat{\phi}_t = L\phi_t)\)

\[
R = \frac{\phi_{\text{QCD}}^{(1)}(\theta, z) - \phi^{\text{stat}}_{\text{QCD}}^{(1)}(\theta)}{\phi_{\text{QCD}}^{(0)}(\theta, z) - \phi^{\text{stat}}_{\text{QCD}}^{(0)}(\theta)} = \frac{\sum_t \hat{\omega}_t^{(0)}(z) \hat{\phi}_t^{(1)}(\theta)}{\sum_t \hat{\omega}_t^{(0)}(z) \hat{\phi}_t^{(0)}(\theta)} + \frac{\sum_t \hat{\omega}_t^{(1)}(z) \hat{\phi}_t^{(0)}(\theta)}{\sum_t \hat{\omega}_t^{(0)}(z) \hat{\phi}_t^{(0)}(\theta)} = \alpha(\theta) + \gamma(\theta) \log(z) + \mathcal{O}(1/z)
\]

When \(R\) is plotted on a linear-log plot, the ratio \(R\) measures:
- \(1/z^2\) corrections: deviations from a linear behaviour,
- coefficient of the subleading logarithm: slope of the data.
Results

$\phi_{QCD}^5(z)$ at one-loop

<table>
<thead>
<tr>
<th>$1/z$</th>
<th>0.0</th>
<th>0.05</th>
<th>0.1</th>
<th>0.15</th>
<th>0.2</th>
<th>0.25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ratio R_5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$0.0/0.5$</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>$0.0/1.0$</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>$0.5/1.0$</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

(a) Fitting ansatz:

$f(z) = \beta_0/z + \beta_1 \log z/z$.

(b) Fitting ansätze:

$f(z) = \alpha + \gamma \log z$ and $f'(z) = \alpha' + \gamma' \log z + \delta'/z$.

Conclusion: $\frac{f(4)-f'(4)}{f(4)} \sim 0.003$.
The observable used is

\[\phi^\text{QCD}_6 = \log \frac{f_{A_0}(\theta, \theta)}{\sqrt{F_1(\theta)}} \]

Matching condition

We match the renormalized observables at static order

\[(\phi^\text{QCD}_6)^\text{ren}(L, z) = (\phi^\text{stat}_6)^\text{ren}(L, z) + \log C^\text{match}_{A_0} (\bar{g}^2(z)) + \mathcal{O}(1/z) \]

and expand both sides in the coupling \(\bar{g}^2(z) \)

\[(\phi^\text{QCD}_6)^{(0)}(z) = (\phi^\text{stat}_6)^{(0)} + \mathcal{O}(1/z), \]

\[(\phi^\text{QCD}_6)^{(\text{ren}, 1)}(z) = (\phi^\text{stat}_6)^{(\text{bare}, 1)} - \gamma_0 \log(a \bar{m}) + B_{A_0} + \mathcal{O}(1/z). \]
Subtracting $\gamma_0 \log z$ from both sides yields

$\left(\phi_6^{QCD} \right)^{(\text{ren},1)}(z) - \gamma_0 \log z = \left(\phi_6^{\text{stat}} \right)^{(\text{bare},1)} - \gamma_0 \log \left(\frac{a}{L} \right) + B_{A_0} + \mathcal{O}(1/z)$

$= \left(\phi_6^{\text{stat}} \right)^{(\text{ren},1)} + \mathcal{O}(1/z)$.

In order to make visible the $1/m_b^2$ corrections we plot the quantity Q defined as

$Q = z \left[\left(\phi_6^{QCD} \right)^{(\text{ren},1)}(z) - \gamma_0 \log z \right] - z \left[\left(\phi_6^{\text{stat}} \right)^{(\text{ren},1)} \right]$

$= z \left[\mathcal{O}(1/z) + \mathcal{O}(1/z^2) \right] = \alpha_0 + \alpha_1 \log(z) + \mathcal{O}(1/z)$

When Q is plotted on a linear-log plot:

- the $1/z^2$ corrections are seen as deviations from a linear behaviour
- the coefficient of the subleading logarithm as the slope of the data
(a) Fitting ansatz:
\[f(z) = \beta_0 + \beta_1/z + \beta_2 \log z/z. \]

(b) Fitting ansätze:
\[f(z) = \alpha_0 + \alpha_1 \log z \]
and \[f'(z) = \alpha'_0 + \alpha'_1 \log z + \alpha'_2/z. \]

Conclusion:
\[\frac{f(4) - f'(4)}{f(4)} \sim 0.01. \]
Conclusions

- lattice HQET is a prototype of an effective theory where one can perform a non-perturbative matching.

- We have a setup for checking contamination with $1/z^2$ terms of the matching conditions.

- We can further optimize the choice of kinematics for the matching conditions.

- We presented results for 2 generic matching conditions; results for all 19 matching conditions fixing \mathcal{L}_{HQET}, vector and axial currents at order $1/m_b$ are ready.