Motivation 000 Actions 00000 Decay Constant

Results

Conclusion

B-meson decay constants with domain-wall light quarks and nonperturbatively tuned relativistic *b*-quarks

RBC and UKQCD collaborations

Oliver Witzel Center for Computational Science

Lattice 2013, Mainz, Germany

Motivation	Actions	Decay Constant	Results
•00	00000	000	00000

Conclusion

Motivation: CKM unitarity triangle fit

[http://ckmfitter.in2p3.fr, http://utfit.roma1.infn.it, http://www.latticeaverages.org]

Decay Constant

Results 00000 Conclusion

Motivation: $B^0 - \overline{B^0}$ Mixing

- Allows us to determine the CKM matrix elements
- Dominant contribution in SM: box diagram with top quarks

 Experimental error of ΔM_q is better than a percent; lattice uncertainty for ξ is about 3%

Motivation	Actions	Decay Constant	Results
00●	00000	000	00000

Motivation: Rare B-decays

- B
 ightarrow au
 u [UTfit Phys.Lett. B687 (2010) 61]
 - ▶ f_B is needed for the Standard-Model prediction of $BR(B \rightarrow \tau \nu)$
 - Strong sensitivity to NP because FCNC processes are suppressed by the Glashow-Iliopoulos-Maiani (GIM)-mechanism in the SM
 - ► Helicity suppressed charged current decays: potential sensitivity to tree-level effects of new scalar particles (charged Higgs bosons in multi-Higgs extensions of the SM, e.g. type-II Two Higgs Doublet Model or MSSM)

Conclusion

$B_s ightarrow \mu_+ \mu_-$ [Buras et al. Eur.Phys.J. C72 (2012) 2172, Buras et al. arXiv:1303.3820 [hep-ph]]

- ▶ f_{B_s} is needed for Standard-Model prediction of $BR(B_s \rightarrow \mu_+\mu_-)$
- ▶ Measured by LHCb with 3.5 σ significance [LHCb Phys.Rev.Lett. 110 (2013) 02180], at EPS2013: combination of LHCb and CMS results gives > 5 σ significance — in agreement with SM

Both are sensitive to new physics!

Motivation	Actions	Decay Constant	Results	Conclusion
000	00000	000	00000	

Our Project

- Use domain-wall light quarks and nonperturbatively tuned relativistic b-quarks to compute at few-percent precision
 - ▶ $B^0 \overline{B^0}$ mixing
 - ▶ Decay constants f_B and f_{B_s}
 - ▶ $B \rightarrow \pi \ell \nu$ form factor [T. Kawanai, Tue 14:20 Room C]
 - ► g_{B*Bπ} coupling constant [B. Samways, Tue 16:40 Room C]
- ▶ Tuned RHQ parameters using bottom-strange states and high statistics
- \blacktriangleright Validated tuning procedure by computing $b\bar{b}$ masses and splittings
- ▶ Use mostly-nonperturbative renormalization scheme for f_B , f_{B_s} and $B o \pi \ell \nu$
- Use one-loop mean-field improved lattice perturbation theory for small correction, and to renormalize B-mixing matrix elements [http://physyhcal.lhnr.de] [C. Lehner, Tue 14:40 Room C]

 $s = L_{c} - 1$

 Configurations generated by RBC and UKQCD | collaborations [C. Allton et al. Phys.Rev. D78 (2008) 114509, Y. Aoki et al. Phys.Rev. D83 (2011) 074508]

Motivation	Actions	Decay Constant	Results
000	00000	000	00000

Conclusion

Relativistic Heavy Quark Action for the *b*-Quarks

- Relativistic Heavy Quark action developed by Christ, Li, and Lin [Christ et al. Phys.Rev. D76 (2007) 074505; Lin and Christ Phys.Rev. D76 (2007) 074506]
- Builds upon Fermilab approach [EI-Khadra et al. Phys.Rev. D55 (1997) 3933] by tuning all parameters of the clover action non-perturbatively; close relation to the Tsukuba formulation

[S. Aoki et al. Prog. Theor. Phys. 109 (2003) 383]

- Heavy quark mass is treated to all orders in $(m_b a)^n$
- Expand in powers of the spatial momentum through $O(\vec{p}a)$
 - Resulting errors will be of $O(\vec{p}^2 a^2)$
 - Allows computation of heavy-light quantities with discretization errors of the same size as in light-light quantities
- Applies for all values of the quark mass
- Has a smooth continuum limit

Motivation	Actions	Decay Constant	Results	Conclusion
000	00000	000	00000	

Nonperturbative Tuning of the RHQ Action Parameters [Phys.Rev. D86 (2012) 116003]

Start from an educated guess for our three parameters m_0a , c_P , and ζ

- ► Probe parameter space at seven points by measuring spin-averaged mass: $\overline{M} = (M_{B_s} + 3M_{B_s^*})/4$ hyperfine-splitting: $\Delta_M = M_{B_s^*} - M_{B_s}$ ratio: $M_1/M_2 = M_{\text{rest}}/M_{\text{kinetic}}$
- Assume linearity to relate parameters and observables
- ▶ Obtain tuned parameters corresponding to physical *b*-quarks by requiring that \overline{M} and Δ_M agree with experiment and that $M_1 = M_2$

Predictions for the Heavy-Heavy States

[Phys.Rev. D86 (2012) 116003]

- ▶ RHQ action describes heavy-light as well as heavy-heavy mesons
- ▶ Tuning the parameters in the *B_s*-system we can predict bottomonium states and mass splittings and thereby test the method
- ▶ We find good agreement with experiment within errors

B-meson Decay Constant Calculation

- ► Use point-source light quark and generate Gaussian smeared-source heavy quark
- Computation performed with seven parameter box and interpolated to the tuned RHQ parameters
- Axial current is 1-loop O(a) improved
- Use mostly nonperturbative renormalization
- \blacktriangleright Combined chiral and continuum extrapolation using heavy meson $\chi {\rm PT}$

Motivation	Actions	Decay Constant	Results
000	00000	000	00000

Mostly Nonperturbative Renormalization

For $f_B,~f_{B_{\rm s}}$ and $B\to\pi$ we compute mostly non-perturbative renormalization factors á la <code>[EI-Khadra et al. Phys.Rev. D64 (2001) 014502]</code>

$$Z_V^{bl} = \varrho^{bl} \cdot \sqrt{Z_V^{bb} Z_V^{ll}}$$

 \blacktriangleright Compute $Z_V^{\prime\prime}$ and Z_V^{bb} non-perturbatively and only $\varrho^{b\prime}$ perturbatively

Conclusion

- Enhanced convergence of perturbative series of *p^{bl}* w.r.t. *Z^{bl}_V* because tadpole diagrams cancel in the ratio
- \blacktriangleright Bulk of the renormalization is due to flavor conserving factor $\sqrt{Z_V'' Z_V^{bb}} \sim 3$
- ϱ^{bl} is expected to be of $\mathcal{O}(1)$; receiving only small corrections
- ► For domain-wall fermions $Z_A = Z_V + \mathcal{O}(m_{\text{res}})$ i.e. we know Z_V^{ll} [Y. Aoki et al. Phys.Rev. D83 (2011) 074508] and compute Z_v^{bb} ourselves

Motivation	Actions	Decay Constant	Re
000	00000	00●	00

Results 00000

Conclusion

Determination of Z_v^{bb}

$$Z_V^{bb} \times \langle B | V^{bb,0} | B \rangle = 2m_B$$
$$\frac{C_2^B(T)}{C_3^{B \to B}(T,t)} \lim_{T,t \to \infty} Z_V^{bb}$$

PRELIMINARY			
$a_{24}m_{sea}^{\prime}$	Z_v^{bb}	$a_{32}m_{sea}^{\prime}$	Z_v^{bb}
0.005 0.010	10.037(34) 10.042(37)	0.004 0.006 0.008	5.270(13) 5.237(12) 5.267(15)
Avg. ⁽²⁴⁾ PT ⁽²⁴⁾ _{1-loop}	10.093(25) 10.72(16)(0)	Avg. ⁽³²⁾ PT ⁽³²⁾ _{1-loop}	5.2560(76) 5.725(74)(1)

PT values: http://physyhcal.lhnr.de

Motivation	Actions	Decay Constant
000	00000	000

Results •0000

Conclusion

Preliminary Results for f_B and f_{B_s}

- On the lattice we compute Φ_{B_q} $f_B = \Phi_{B_q}^{\text{ren}} \cdot a_{32}^{-3/2} / \sqrt{M_{B_q}}$
- Partially quenched data are highly correlated
- Variance-covariance matrix is statistically well resolved
- Linearly interpolate to get f_{B_s} and fit to

 $_{035}$ extrapolate to f_B

Preliminary Results Φ_{B_s}

 Data for Φ_{B_s} show no sea-quark mass dependence

Results

- Average data at same lattice spacing and assume a² scaling to remove light-quark and gluon discretization errors
- Remaining heavy-quark discretization errors will be estimated with heavyquark power counting and included in the systematic error budget

Motivation	Actions	Decay Constant	Results	Conclusion
000	00000	000	0000	

Preliminary Results Φ_{B_d}

Fit only "chiral" data i.e. $a_{24}m_q < 0.01 (m_{\pi} < 420 \text{ MeV})$ using an analytic function in the quark masses and lattice spacing $\Phi_B = \Phi_0 \left[1 + c_{\text{sea}}m'_{\text{sea}}2B/(4\pi f)^2 + c_{\text{val}}m_{\text{val}}2B/(4\pi f)^2 + c_aa^2/(a_{32}^24\pi f)^2\right]$

Preliminary Results Φ_{B_s}/Φ_{B_d}

Fit only "chiral" data i.e. $a_{24}m_q < 0.01 \ (m_{\pi} < 420 \text{ MeV})$ using an analytic function in the quark masses and lattice spacing

 $\Phi_{B_s}/\Phi_B = R_{\Phi} \left[1 + c_{\text{sea}} m_{\text{sea}}^l 2B/(4\pi f)^2 + c_{\text{val}} m_{\text{val}} 2B/(4\pi f)^2 + c_a a^2/(a_{32}^2 4\pi f)^2 \right]$

Motivation	Actions	Decay Constant	Results
000	00000	000	00000

Observations

- ▶ SU(2) HM χ PT is valid for $m_{u,d} \ll m_s$. Are our data "chiral" enough?
- ▶ Our data do not show visible signs of SU(2) chiral logarithms.
- Strong correlations among partially quenched data are troublesome. Are light valence-quark masses too close to each other?

Preliminary Results

- $f_B = 198(6) \text{ MeV} \Rightarrow f_{B_s}/f_B = 1.19(5)$
- $f_{B_s}/f_B = 1.173(7) \Rightarrow f_B = 200(5) \text{ MeV}$
- Overall consistent results

Statistical errors only! Derived (gray) results neglect correlations! Conclusion

Outlook

- \blacktriangleright We are finalizing the analysis of $f_B,~f_{B_s}$ and f_{B_s}/f_B
- ▶ Next we start the computation of $B^0 \overline{B^0}$ mixing
- ► Future data will be obtained at physical pions on the 48³ × 96 and 64³ × 128 Möbius domain-wall ensembles