Fisher's zeros for SU(3) with N_f flavors and RG flows

Yuzhi Liu

The University of Iowa

Fermilab

Lattice 2013 Mainz July 30, 2013

In collaboration with Z. Gelzer, Y. Meurice and D. K. Sinclair (ANL).

- Global Aspects of RG flows for SU(3) with N_f flavors
- Fisher's zeros and finite size scaling
- Two lattice matching and renormalization group flows
- Fisher's zeros for *SU*(3) with *N_f* flavors
- Conclusions

Generic descriptions of the the global properties of the RG flows:

- β (inverse bare coupling) direction
- bare mass direction
- "other" directions (induced by blocking or coarse graining the bare theory)

The bare theory is a point in the β -mass plane

To start with, this could describe the situation of SU(3) with N_f flavors of unimproved staggered fermions at zero temperature.

Deformations will be discussed later

The bare plane

SU(3) with N_f flavors: pure gauge plane

SU(3) with N_f flavors: the massless plane

SU(3) with N_f flavors: types of flows

Figure: Schematic flows

SU(3) with N_f flavors: bulk transitions

Figure: Surface of bulk transitions?

SU(3) with N_f flavors

Figure: Schematic flows (a better picture).

SU(3) with N_f flavors: IR fixed point

Figure: β^* from " the least irrelevant direction".

β_{bulk} and β^* as a function of N_f

Figure: β_{bulk} and β^* (see de Forcrand et al. arXiv:1211.3374, Tomboulis arXiv:1211.4842). Could the solid line and the dotted line merge at N_f^c ?

SU(3) with N_f flavors: Non-integer N_f ?

Figure: Average Plaq for integer and non-integer N_f ; V = 4⁴; m = 0.02.

UNIVERSITY OF IOWA

Figure: What is the lowest value of N_f for which the finite T transition turns into a bulk transition?

SU(3) with N_f = 12, Finite T transition turning into a bulk transition

Plaq vs beta; Nf=12; m=0.02

Figure: Plaquette discontinuities for various lattices. 8 4 means a 8³ × 4 lattice. THE UNIVERSITY OF IOWA

SU(3) with N_f = 12: Finite T transition turning into a bulk transition

Pbp vs beta; Nf=12; m=0.02

OF IOWA

$N_f = 12$ Finite T transition turning into a bulk transition

Figure: Polyakov's loop (time-periodic Wilson's line) for various lattices. 8 4 means $8^3 \times 4$ lattice.

Questions

- What is the lowest value of N_f for which the finite T transition turns into a bulk transition?
- How does the end point in (β, m) for 12 flavors (Jin and Mawhinney arXiv:1203.5855) and 8 flavors (Christ and Mawhinney, Phys.Rev. D46 (1992)) disappear? (Could it shrink to zero mass?)

 $\langle Plaq \rangle$ for different N_f and V = 4³ x 4

Figure: Average Plaquette for different N_f (preliminary).

Fisher's zeros and RG flows

OF IOWA

Fisher's zeros and Finite Size Scaling

Decomposition of the partition function (Niemeijer and van Leeuwen)

$$Z = Z_{sing.} e^{G_{bounded}}$$

 $Z_{sing.} = e^{-L^D f_{sing.}}$

RG transformation: the lattice spacing a increases by a scale factor b

$$egin{array}{ccc} a &
ightarrow ba \ L &
ightarrow L/b \ f_{sing.} &
ightarrow b^D f_{sing.} \ Z_{sing.} &
ightarrow Z_{sing.} \end{array}$$

Important Conclusion (Itzykson et al. 83)

The zeros of the partition functions are RG invariant.

Fisher's zeros: zeros of the partition function in the complex β plane.

We consider discrete RG transformations.

- Lattice size in lattice spacing unit: $L \longrightarrow \frac{L}{D}$
- Scaling variables: $u_i \longrightarrow \lambda_i u_i = b^{y_i} u_i$
 - Relevant variables: $\lambda_i = b^{1/\nu_i} > 1$.
 - Irrelevant variables: $\lambda_j = b^{-\omega_j} < 1$.
- Singular part of the partition function: $Z_s = Q(\{u_i L^{1/\nu_i}\}, \{u_j L^{-\omega_j}\})$

If we only keep one relevant variable $u \simeq \beta - \beta_c$, Fisher's zeros have the following relation

$$uL^{1/\nu} = A + BL^{-\omega} + \mathcal{O}(L^{-2\omega}),$$

and the lowest Fisher's zeros

$$\begin{aligned} & \operatorname{Re}(\beta_1(L)) - \beta_c = \operatorname{Re}(A)L^{-1/\nu} + \operatorname{Re}(B)L^{-1/\nu-\omega}, \\ & \operatorname{Im}(\beta_1(L)) = \operatorname{Im}(A)L^{-1/\nu} + \operatorname{Im}(B)L^{-1/\nu-\omega}. \end{aligned}$$

Fisher's zeros and Finite Size Scaling

Fisher's zeros and RG flows

Fisher's zeros and Finite Size Scaling

- Calculate both the real and imaginary part of the partition function.
- The "logarithmic residue" method

$$\frac{1}{2\pi i} \oint_{\mathbf{C}} \beta^n \frac{Z'(\beta)}{Z(\beta)} = \sum_{i=1}^k \beta_i^n,$$

where β_i are all the zeros in the integration region *C*.

- Single point reweighting → multiple point reweighting.
- Approximate the density of state via Chebyshev polynomial.
- Different methods allow us to crosscheck the final results.

Two lattice matching and renormalization group flows

- Two lattice matching is a way to measure the running of the bare couplings and to construct the approximate RG flows. (A. Hasenfratz PRD 80 034505)
- One of the two lattice matching observables:

$$R(\beta, \mathcal{V}/a^{D}) \equiv \frac{\left\langle (\sum_{x \in B_{1}} \vec{\phi}_{x}) (\sum_{y \in B_{2}} \vec{\phi}_{y}) \right\rangle_{\beta}}{\left\langle (\sum_{x \in B_{1}} \vec{\phi}_{x}) (\sum_{y \in B_{1}} \vec{\phi}_{y})) \right\rangle_{\beta}}$$

The matching condition can be chosen as

$$R(\beta, L^{D}) = R(\beta', (L/b)^{D})$$
$$\beta = \beta_{0} \Longrightarrow \beta'_{1}$$
$$\beta = \beta'_{1} \Longrightarrow \beta''_{1}$$
$$\vdots$$

Two lattice matching and renormalization group flows

Figure: Fisher's zeros seperate complex RG flows (arrows) (PRL 104 25160).

UNIVERSITY OF IOWA

Fisher's zeros of the 2D O(2) model: TRG and MC

Figure: Fisher's zeros of XY model with L = 4, 8, 16, 32, 64 for 30 states compared to MC (Alan Denbleyker and Haiyuan Zou).

UNIVERSITY OF IOWA

Fisher's zeros and Finite Size Scaling

• Zeros of SU(3) with 3 flavors with reweighting method.

Figure: Fisher's zeros obtained by reweighting for 3 light quarks on a 4×12^3 lattice. Left: plaquette distributions for several values of β . The high-statistics (very expensive!) double peak distribution at β =5.124 is superimposed. L^{-3} scaling for the linaginary part of lowest zero for $4 \times L^3$ lattices.

OF IOWA

Fisher zeros for SU(3) with $N_f = 4$ and 12

Figure: Zeros for $N_f = 4$ and $N_f = 12$ for L^4 lattices (L = 16, 20 preliminary). 12 flavors seems to pinch the real axis. Higher volumes in progress.

Fisher zeros scaling for SU(3) with $N_f = 12$

Figure: Lowest zeros scale like L^{-4} (bulk). (L = 16, 20 preliminary).

- Will the Fisher's zero pinch the real axis like L⁻² (ν=1/2, mean field for a free scalar) instead of L⁻⁴ near the end point (for m = m_c)?
- Is it possible to find a hint of the IR fixed point from the behavior of the zeros over a broader *β* interval as a function of *m*?
- Are the two questions related?

- The RG flows can be understood from the Fisher's zeros point of view.
- There is a clear first order phase transition for N_f = 12 from the scaling of the zeros. (L⁻⁴)
- We are looking for the smallest N_f for which the finite temperature transition turns into a bulk transition. It may be possible to make connection between β_{bulk} and β^{*}.
- Understanding the mass dependence of the transition and calculating the mass anomalous dimension γ_m from the zeros is in progress.
- Adding improvement terms to the fermion action may change the phase structure (S4*b* phase, Zech Gelzer, in progress).
- New methods to perform the RG blocking is possible. (YM's talk on Tensor RG.)

Backup Slides

Yuzhi Liu (U. of Iowa)

Fisher's zeros and RG flows

Lattice 2013 Mainz July 30, 2013 30 / 32

Finite T transition turning into a bulk transition?

The two loop β function for arbitrary N_c and N_f reads

$$\beta(g) = -a \frac{\partial g}{\partial a} = -\beta_0 g^3 - \beta_1 g^5 + \cdots$$

where

$$\beta_0 = \frac{1}{16\pi^2} (\frac{11}{3} N_c - \frac{2}{3} N_f)$$

and

$$\beta_1 = \frac{1}{(16\pi^2)^2} (\frac{34N_c^2}{3} - \frac{10N_cN_f}{3} - \frac{(-1+N_c^2)N_f}{N_c})$$

The solution of the above differential equation is

$$a = rac{1}{\Lambda_L} \exp(-rac{1}{2eta_0 g^2}) (eta_0 g^2)^{-rac{eta_1}{2eta_0^2}}$$

Since the physical temperature T is give by $aT = N_t^{-1}$ and $\beta = 2N_c/g^2$, we can get

$$aT\Lambda_L/T = \exp(-rac{eta}{4N_ceta_0})(rac{eta}{2N_ceta_0})^{rac{eta_1}{2eta_0^2}}$$
 $U_{ ext{NIV}}^{ ext{TH}}$

IOWA

Finite T transition turning into a bulk transition?

$$\ln(N_t) = \ln(\frac{\Lambda_L}{T}) + \frac{\beta}{4N_c\beta_0} - \frac{\beta_1}{2\beta_0^2}\ln(\frac{\beta}{2N_c\beta_0})$$

For $N_f = 12$ and $N_c = 3$, we will have

$$\ln(N_t) = \ln(\frac{\Lambda_L}{T}) + \frac{4\pi^2\beta}{9} + \frac{25}{9}\ln(\frac{8\pi^2\beta}{9})$$

at 2-loop level.

Assuming the physical critical temperature T_c and Λ_L is fixed, then we will have

$$\ln(\frac{N_{t2}}{N_{t1}}) = \frac{4\pi^2(\beta_{c2} - \beta_{c1})}{9} + \frac{25}{9}\ln(\frac{\beta_{c2}}{\beta_{c1}}).$$

The $\delta\beta_c = \beta_{c2} - \beta_{c1}$ is almost proportional to $\ln(\frac{N_{t2}}{N_{t1}})$ since $\frac{\beta_{c2}}{\beta_{c1}} \approx 1$ for large adjacent N_t .

$$\ln(\frac{16}{12}) = \frac{4\pi^2(\beta_{c2} - \beta_{c1})}{9} + \frac{25}{9}\ln(\frac{\beta_{c2}}{\beta_{c1}})$$

For $N_{t2} = 16$ and $N_{t1} = 12$, $\delta \beta_c = \beta_{c2} - \beta_{c1} \approx 0.058$.

OF LOWA