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Attempt to describe globally the RG flows of SU(3)
with Nf flavors

Generic descriptions of the the global properties of the RG flows:

β (inverse bare coupling) direction

bare mass direction

"other" directions (induced by blocking or coarse graining the bare theory)

The bare theory is a point in the β-mass plane

To start with, this could describe the situation of SU(3) with Nf flavors of
unimproved staggered fermions at zero temperature.

Deformations will be discussed later
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The bare plane
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SU(3) with Nf flavors: pure gauge plane
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SU(3) with Nf flavors: the massless plane
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SU(3) with Nf flavors: types of flows

Figure: Schematic flows
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SU(3) with Nf flavors: bulk transitions

Figure: Surface of bulk transitions?
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SU(3) with Nf flavors

Figure: Schematic flows (a better picture).
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SU(3) with Nf flavors: IR fixed point

Figure: β∗ from " the least irrelevant direction".
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βbulk and β∗ as a function of Nf

Figure: βbulk and β∗ (see de Forcrand et al. arXiv:1211.3374, Tomboulis
arXiv:1211.4842). Could the solid line and the dotted line merge at Nc

f ?
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SU(3) with Nf flavors: Non-integer Nf ?
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Figure: Average Plaq for integer and non-integer Nf ; V = 44; m = 0.02.
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Finite T

Figure: What is the lowest value of Nf for which the finite T transition turns into a bulk
transition?
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SU(3) with Nf = 12, Finite T transition turning into a
bulk transition
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Figure: Plaquette discontinuities for various lattices. 8 4 means a 83
× 4 lattice.
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SU(3) with Nf = 12: Finite T transition turning into a
bulk transition
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Figure: < ψ̄ψ > discontinuities for various lattices. 8 4 means a 83
× 4 lattice.
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Nf = 12 Finite T transition turning into a bulk transition
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Figure: Polyakov’s loop (time-periodic Wilson’s line) for various lattices. 8 4 means
83

× 4 lattice.
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Questions

What is the lowest value of Nf for which the finite T transition turns into a
bulk transition?
How does the end point in (β,m) for 12 flavors (Jin and Mawhinney
arXiv:1203.5855) and 8 flavors (Christ and Mawhinney, Phys.Rev. D46
(1992)) disappear? (Could it shrink to zero mass?)
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Fisher’s zeros and Finite Size Scaling

Decomposition of the partition function (Niemeijer and van Leeuwen)

Z = Zsing.e
Gbounded

Zsing. = e−LD fsing.

RG transformation: the lattice spacing a increases by a scale factor b

a → ba

L → L/b

fsing. → bD fsing.

Zsing. → Zsing.

Important Conclusion (Itzykson et al. 83)
The zeros of the partition functions are RG invariant.

Fisher’s zeros: zeros of the partition function in the complex β plane.
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Fisher’s zeros and Finite Size Scaling

We consider discrete RG transformations.

Lattice size in lattice spacing unit: L −→ L
b

Scaling variables: ui −→ λiui = byi ui

Relevant variables: λi = b1/νi > 1.
Irrelevant variables: λj = b−ωj < 1.

Singular part of the partition function: Zs = Q({uiL1/νi }, {ujL−ωj})

If we only keep one relevant variable u ≃ β − βc , Fisher’s zeros have the
following relation

uL1/ν = A + BL−ω +O(L−2ω),

and the lowest Fisher’s zeros

Re(β1(L))− βc = Re(A)L−1/ν + Re(B)L−1/ν−ω ,

Im(β1(L)) = Im(A)L−1/ν + Im(B)L−1/ν−ω .
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Fisher’s zeros and Finite Size Scaling
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Fisher’s zeros and Finite Size Scaling

Calculate both the real and imaginary part of the partition function.

The “logarithmic residue” method

1
2πi

∮

C
βn Z ′(β)

Z (β)
=

k
∑

i=1

βn
i ,

where βi are all the zeros in the integration region C.

Single point reweighting → multiple point reweighting.

Approximate the density of state via Chebyshev polynomial.

Different methods allow us to crosscheck the final results.

Yuzhi Liu (U. of Iowa) Fisher’s zeros and RG flows Lattice 2013 Mainz July 30, 2013 21 / 32



Two lattice matching and renormalization group flows

Two lattice matching is a way to measure the running of the bare
couplings and to construct the approximate RG flows. (A. Hasenfratz
PRD 80 034505)

One of the two lattice matching observables:

R(β,V/aD) ≡

〈

(
∑

x∈B1
~φx )(

∑

y∈B2
~φy )

〉

β
〈

(
∑

x∈B1
~φx )(

∑

y∈B1
~φy ))

〉

β

The matching condition can be chosen as

R(β, LD) = R(β′, (L/b)D)

β = β0 =⇒ β′

1

β = β′

1 =⇒ β′′

1

...
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Two lattice matching and renormalization group flows
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Figure: Fisher’s zeros seperate complex RG flows (arrows) (PRL 104 25160).
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Fisher’s zeros of the 2D O(2) model: TRG and MC

Figure: Fisher’s zeros of XY model with L = 4, 8, 16, 32, 64 for 30 states compared to
MC (Alan Denbleyker and Haiyuan Zou).
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Fisher’s zeros and Finite Size Scaling

Zeros of SU(3) with 3 flavors with reweighting method.
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Figure: Fisher’s zeros obtained by reweighting for 3 light quarks on a 4 × 123 lattice.
Left: plaquette distributions for several values of β. The high-statistics (very
expensive!) double peak distribution at β =5.124 is superimposed. L−3 scaling for the
Imaginary part of lowest zero for 4 × L3 lattices.
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Fisher zeros for SU(3) with Nf = 4 and 12
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Fisher zeros scaling for SU(3) with Nf = 12
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Figure: Lowest zeros scale like L−4 (bulk). (L = 16, 20 preliminary) .
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Questions

Will the Fisher’s zero pinch the real axis like L−2 (ν=1/2, mean field for a
free scalar) instead of L−4 near the end point (for m = mc)?

Is it possible to find a hint of the IR fixed point from the behavior of the
zeros over a broader β interval as a function of m?

Are the two questions related?
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Conclusion

The RG flows can be understood from the Fisher’s zeros point of view.

There is a clear first order phase transition for Nf = 12 from the scaling of
the zeros. (L−4)

We are looking for the smallest Nf for which the finite temperature
transition turns into a bulk transition. It may be possible to make
connection between βbulk and β∗.

Understanding the mass dependence of the transition and calculating the
mass anomalous dimension γm from the zeros is in progress.

Adding improvement terms to the fermion action may change the phase
structure (S4b phase, Zech Gelzer, in progress).

New methods to perform the RG blocking is possible. (YM’s talk on
Tensor RG.)
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Backup Slides
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Finite T transition turning into a bulk transition?

The two loop β function for arbitrary Nc and Nf reads

β(g) = −a
∂g
∂a

= −β0g3 − β1g5 + · · ·

where

β0 =
1

16π2 (
11
3

Nc −
2
3

Nf )

and

β1 =
1

(16π2)2 (
34N2

c

3
−

10NcNf

3
−

(−1 + N2
c )Nf

Nc
)

The solution of the above differential equation is

a =
1
ΛL

exp(−
1

2β0g2 )(β0g2)
−

β1
2β2

0

Since the physical temperature T is give by aT = N−1
t and β = 2Nc/g2, we

can get

aTΛL/T = exp(−
β

4Ncβ0
)(

β

2Ncβ0
)

β1
2β2

0
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Finite T transition turning into a bulk transition?

ln(Nt ) = ln(
ΛL

T
) +

β

4Ncβ0
−

β1

2β2
0

ln(
β

2Ncβ0
)

For Nf = 12 and Nc = 3, we will have

ln(Nt ) = ln(
ΛL

T
) +

4π2β

9
+

25
9

ln(
8π2β

9
)

at 2-loop level.
Assuming the physical critical temperature Tc and ΛL is fixed, then we will
have

ln(
Nt2

Nt1
) =

4π2(βc2 − βc1)

9
+

25
9

ln(
βc2

βc1
).

The δβc = βc2 − βc1 is almost proportional to ln(Nt2
Nt1

) since βc2
βc1

≈ 1 for large
adjacent Nt .

ln(
16
12

) =
4π2(βc2 − βc1)

9
+

25
9

ln(
βc2

βc1
)

For Nt2 = 16 and Nt1 = 12, δβc = βc2 − βc1 ≈ 0.058.
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