

In this talk, I show the progress in the study of running coupling constant of SU(3) theory with 12 flavors with Polyakov loop scheme including larger lattice L=24⁴ Continuation of JHEP08(2012)096 "Lattice study of infrared behaviour

in SU(3) gauge theory with twelve massless flavours"

Outline

Motivation Step Scaling Function Polyakov Loop Scheme Settings Results (Coup.Const, SSF) Summary Comments

Motivation

Large Flavor Theory - Candidate of BSM

Running of the coupling constant is important quantity to study

JHEP08(2012)096 SSF Study IRFP g² ~ 2 Large Systematic Error

coming from taking continuum limit

=> Further study with Larger Lattice L=24

Twisted Polyakov Loop Scheme G.M.deDivitiis et al., Nucl.Phys.B422(1994) **Twisted Boundary Condition** $U_{\mu}(x+\hat{\nu}L) = \Omega_{\nu}U_{\mu}(x)\Omega^{\dagger}_{\nu}$ for $\nu = 1, 2$ $\Omega_1 \Omega_2 = e^{i2\pi/3} \Omega_2 \Omega_1, \ \Omega_\mu \Omega_\mu^\dagger = 1, \text{ single valuedness}$ with $(\Omega_{\mu})^3 = 1$, $\operatorname{Tr}[\Omega_{\mu}] = 0$ SU(3) e.g., $\Omega_1 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \qquad \Omega_2 = \begin{pmatrix} e^{-i2\pi/3} & 0 & 0 \\ 0 & e^{i2\pi/3} & 0 \\ 0 & 0 & 1 \end{pmatrix}$ Fermion - "smell" degrees of freedom $\psi^a_{\alpha}(x+\hat{\nu}L) = e^{i\pi/3}\Omega^{ab}_{\nu}\psi^b_{\beta}(\Omega_{\nu})^{\dagger}_{\beta\alpha}$

Results From L<=20 Lattice JHEP08(2012)096

Simulation Setting

Staggered Fermion (Unimproved), $m_f=0.0$, $N_f = 12$ (4 tastes x 3 smells)

Plaquette Gauge Action, Beta = $4 \sim 100$ Beta interpolation non-decreasing polynomial Hyper Cubic Box, $N_x = N_y = N_z = N_t$ $N_x = 6, 8, 10, 12, 16, 20, 24$ $\Sigma(L^{z})$ $\Sigma(L=12)$ four $\Sigma(L)$'s Size of Step Scaling s = 2To accumulate L=24 data, O(100) GPU are devoted for one year NCHC(Taiwan)

L=24 Data

				stat. error
Beta	g ²	stat. error	#traj.	x sqrt(#traj)
06.00	2.xx	0.116	1044850	118.573
06.50	2.xx	0.065	541040	47.811
07.00	2.xx	0.050	361180	30.0491
07.50	1.xx	0.045	341540	26.2986
08.00	1.xx	0.046	226090	21.8725
09.00	1.xx	0.033	234150	15.9684
10.00	1.xx	0.037	141910	13.9382
12.00	0.xx	0.024	138340	8.92658
14.00	0.xx	0.018	141790	6.7779
16.00	0.xx	0.015	114780	5.08188
18.00	0.xx	0.013	111870	4.34811
20.00	0.xx	0.011	85310	3.21287

Step Scaling Function s=2

Similar Problem are displayed in PoS LATTICE2010 (2010) 054 (E Itou, et al)

