Improved Lattice Renormalization Group Techniques

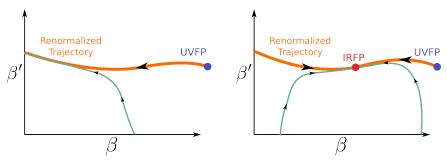
> Gregory Petropoulos Anqi Cheng, Anna Hasenfratz, David Schaich

> > University of Colorado Boulder

July 30, 2013

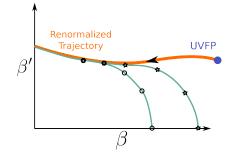
Wilson Renormalization Group

RG transformation integrates out high momentum modes



- flow to renormalized trajectory in irrelevant directions
- flow along renormalized trajectory in relevant directions
- flow away from ultraviolet fixed points
- flow to infrared fixed points

Monte Carlo Renormalization Group



- block (integrate out UV)
 - ► a → 2a
 - ► $\Lambda_{cut} \rightarrow \frac{\Lambda_{cut}}{2}$
- match $(\beta_1, n_b) \equiv (\beta_2, n_{b-1})$
- optimize

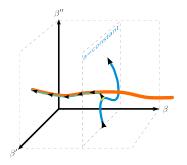
Two ways of Optimizing

Traditional Weakness of MCRG

- 1. finite number of blocking steps not enough to reach RT
- 2. optimization of block transformation to reach RT faster leads to 'composite' step scaling function
- Solution: optimization of Wilson flow before blocking
 - 1. reaches RT quickly
 - 2. get a unique step scaling function

Optimization with Wilson Flow

Wilson flow integrates infinitesimal smearing steps.



- Wilson flow removes UV fluctuation
- Wilson flow does not change lattice spacing
- Moves system toward the RT
- ► Proceed with MCRG

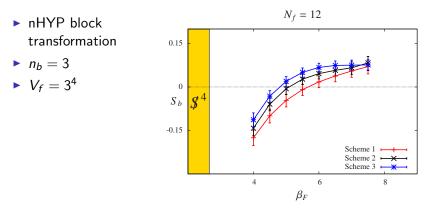
fermion mass exactly zero

- APBC lattices
- fundamental adjoint gauge action
- nHYP smeared staggered fermions

Volume	Bare Coupling (β_F)
6 ⁴	3.4, 3.6, 7.8, 8.0
8 ⁴	3.0, 3.2, 7.8, 8.0
12 ⁴	3.4, 3.6, 7.8, 8.0
16 ⁴	3.0, 3.2, 7.8, 8.0
24 ⁴	4.0, 4.5, 7.5, 8.0
32 ⁴	4.0, 6.0
48 ⁴	6.0

6⁴ - 12⁴ - 24⁴ Matching

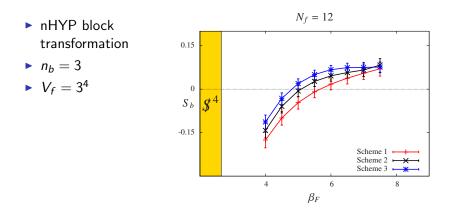
Errors indicate the spread in s_b predicted by each observable.



Scheme 1: 0.6 0.2 0.2 Scheme 2: 0.6 0.3 0.2 Scheme 3: 0.65 0.3 0.2

6⁴ - 12⁴ - 24⁴ Matching

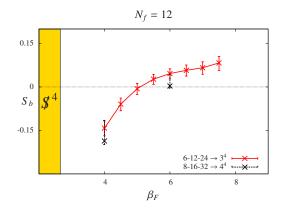
Errors indicate the spread in s_b predicted by each observable.



Now let's look at Scheme 2 and change n_b , V_f .

8⁴ - 16⁴ - 32⁴ Matching

- Scheme 2
- $n_b = 3$ $V_f = 4^4$

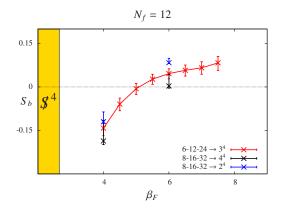


8⁴ - 16⁴ - 32⁴ Matching

Scheme 2

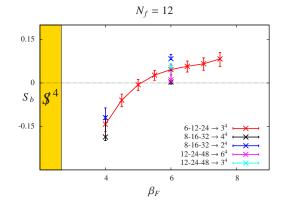
• $n_b = 3$ $V_f = 4^4$

• $n_b = 4$ $V_f = 2^4$



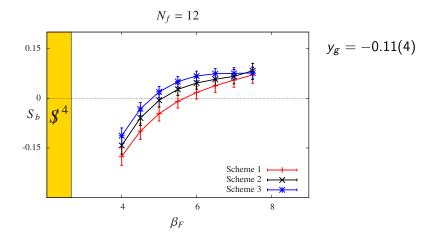
12⁴ - 24⁴ - 48⁴ Matching

▶ Scheme 2
▶ $n_b = 3$ $V_f = 4^4$ ▶ $n_b = 4$ $V_f = 2^4$ ▶ $n_b = 3$ $V_f = 6^4$ ▶ $n_b = 4$ $V_f = 3^4$



Gauge Coupling Scaling Dimension y_g

The slope of the step scaling function at the fixed point is related to y_g .



Another Approach

New RG approaches have been proposed that use Wilson Flow to find the renormalized step scaling function.

MCRG

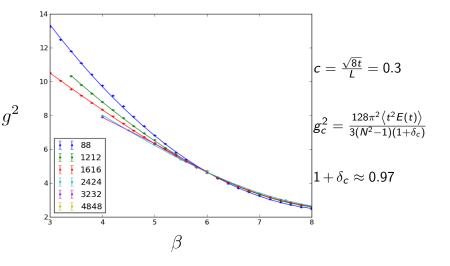
- does not depend on perturbation theory
- does not require special b.c.
- requires a scale factor of 2

Wilson Flow

- relies on perturbation theory
- does not require special b.c.
- does not require a scale factor of 2

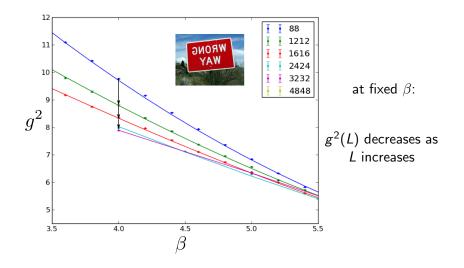
Fodor, Holland, Kuti, Nogradi, Wong: arXiv:1208.1051 Fritzsch, Ramos: arXiv: 1301.4388

Wilson Flow - Preliminary



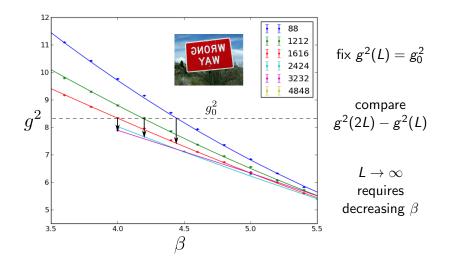
Continuum Extrapolation - Preliminary

Very different from asymptotic freedom.



Continuum Extrapolation - Preliminary

This is not $\beta = \infty$ continuum limit.



Conclusions

- New work on an established method
- With Wilson flow MCRG we can find a unique step scaling function
- Wilson flow MCRG predicts an IRFP and $y_g = -0.11(4)$
- Wilson flow MCRG is computationally inexpensive; does not rely on perturbation theory

Acknowledgments

- Anna, David, Anqi
- DOE Office of Science Graduate Student Fellowship
- USQCD
- University of Colorado Research Computing (Janus)
- NSF XSEDE
- Thank you for watching