Composite flavor-singlet scalar in twelve-flavor QCD

Takeshi Yamazaki

Kobayashi-Maskawa Institute for the Origin of Particles and the Universe Nagoya University

Y. Aoki, T. Aoyama, M. Kurachi, T. Maskawa, K. Miura, K.-i. Nagai, H. Ohki, E. Rinaldi, A. Shibata, K. Yamawaki

(LatKMI Collaboration)

Ref. arXiv:1305.6006

Lattice 2013 @ Johannes Gutenberg University Mainz July 29–August 3, 2013

Contents

- Introduction
 - Motivation
 - Purpose of our project
- Calculation of flavor-singlet scalar
 - Difficulty of calculation
 - Result of $N_f = 12 \text{ QCD}$
- Summary and future perspectives

Discovery of "Higgs" particle @ LHC $m_H \sim 126~{ m GeV}$

Still we have lots of things to understand, such as

- Property of "Higgs" particle elementary
- Mechanism of electroweak symmetry breaking $\langle H \rangle \neq 0$
- Gauge hierarchy problem fine tuning of m_H

Standard Model

Beyond Standard Model: SUSY, Little Higgs, Technicolor, ···

Discovery of "Higgs" particle @ LHC $m_H \sim 126~{\rm GeV}$

Still we have lots of things to understand, such as

- Property of "Higgs" particle
 elementary composite
- Mechanism of electroweak symmetry breaking $\langle H \rangle \neq 0$ VEV from dynamics
- Gauge hierarchy problem fine tuning of m_H no fine tuning

Standard ModelTechnicolor: strongly coupled theoryBeyond Standard Model: SUSY, Little Higgs, Technicolor, ···

 N_f massless fermions + SU(N_{TC}) gauge at $\mu_{TC} = O(1)$ TeV

- Spontaneous chiral symmetry breaking
- Slow running (walking) coupling in wide scale range
- Large anomalous mass dimension $\gamma^* \sim \mathbf{1}$ in walking region

• Composite, light scalar state

pprox Higgs ightarrow explain $M_{
m Higgs}/v_{
m EW}\sim 0.5$

- Spontaneous chiral symmetry breaking
- Slow running (walking) coupling in wide scale range
- Large anomalous mass dimension $\gamma^* \sim \mathbf{1}$ in walking region
- Composite, light scalar state

Question: Such a theory really exists?

Nonperturbative calculation is important.

 \rightarrow numerical calculation with lattice gauge theory

- Spontaneous chiral symmetry breaking
- Slow running (walking) coupling in wide scale range
- Large anomalous mass dimension $\gamma^* \sim 1$ in walking region
- Composite, light scalar state

Question: Such a theory really exists?

Nonperturbative calculation is important.

 \rightarrow numerical calculation with lattice gauge theory

- Spontaneous chiral symmetry breaking
- Slow running (walking) coupling in wide scale range
- Large anomalous mass dimension $\gamma^* \sim 1$ in walking region
- Composite, light scalar state

Question: Such a theory really exists?

Nonperturbative calculation is important.

 \rightarrow numerical calculation with lattice gauge theory

Lattice studies for (approximate) conformal gauge theory: '92 Iwasaki *et al.*, '92 Brown *et al.*, '97 Damgaard *et al.*, '08 Appelquist *et al.*, and various other works Purpose of our project Search for candidate of walking technicolor Systematic investigation of N_f dependence SU(3) gauge theory with $N_f = 0, 4, 8, 12, 16$ fermions Common setup for all N_f : Improved staggered action (HISQ/Tree) Cheaper calculation cost + small lattice systematic error '12 Bazakov et al.

Recent works of our group

- Basic physical quantities: m_{π} , F_{π} , m_{ρ} , $\langle \overline{\psi}\psi \rangle$ $N_f = 12$: PRD86(2012)054506 $N_f = 8$: PRD87(2013)094511 [Kei-ichi Nagai: 1F] $N_f = 8$ may be candidate of walking theory
- Flavor-singlet scalar in (approximate) conformal theory $N_f = 12$: arXiv:1305.6006; glueball [Enrico Rinaldi: 1F] $N_f = 8$ [Hiroshi Ohki: 1F]
- $N_f = 8$ S parameter [Yasumichi Aoki: 5F]

Purpose of our project Search for candidate of walking technicolor Systematic investigation of N_f dependence SU(3) gauge theory with $N_f = 0, 4, 8, 12, 16$ fermions Common setup for all N_f : Improved staggered action (HISQ/Tree) Cheaper calculation cost + small lattice systematic error '12 Bazakov et al.

Recent works of our group

- Basic physical quantities: m_{π} , F_{π} , m_{ρ} , $\langle \overline{\psi}\psi \rangle$ $N_f = 12$: PRD86(2012)054506 $N_f = 8$: PRD87(2013)094511 [Kei-ichi Nagai: 1F] $N_f = 8$ may be candidate of walking theory
- Flavor-singlet scalar in (approximate) conformal theory $N_f = 12$: arXiv:1305.6006; glueball [Enrico Rinaldi: 1F] $N_f = 8$ [Hiroshi Ohki: 1F]
- $N_f = 8$ S parameter [Yasumichi Aoki: 5F]

Purpose of this talk Search for candidate of walking technicolor

Why $N_f = 12$

• Investigated by many groups

'08,'09 Appelquist *et al.*, '10 Deuzeman *et al.*, '10,'12 Hasenfratz,
'11 Fodor *et al.*, '11 Appelquist *et al.*, '11 DeGrand, '11 Ogawa *et al.*,
'12 Lin *et al.*, '12 Itou, '12 Jin and Mawhinney, and ···

In our work PRD86(2012)054506 consistent behavior with conformal phase

• Flavor-singlet scalar in conformal theory is not understood well.

- 1. SU(2) Adjoint $N_f = 2$ glueball: '09 Del Debbio *et al.*
- 2. SU(3) $N_f = 12$ meson: '12 Jin and Mawhinney

Purpouse of this work

Understand properties of flavor-singlet scalar in $N_f = 12$ regarded as pilot study of more interesting $N_f = 8$ theory

Difficulty of flavor-singlet scalar meson

• Flavor non-singlet scalar meson $S_{NS}(t) = \sum_{\vec{x}} \overline{\psi}_a(\vec{x}, t) \psi_b(\vec{x}, t) \ (a \neq b)$

$$\langle 0|S_{NS}(t)S_{NS}^{\dagger}(0)|0\rangle = \left\langle \underbrace{\left\langle \cdots\right\rangle}_{E} \right\rangle = -C(t)$$

c.f. m_{π}, F_{π} from non-singlet pseudoscalar

O(10) configurations $\times O(1) D^{-1}[U](x,y)$

• Flavor-singlet scalar meson $S(t) = \sum_{\vec{x}} \overline{\psi}_a(\vec{x}, t) \psi_a(\vec{x}, t)$ $\langle 0|S(t)S^{\dagger}(0)|0 \rangle = -C(t) + 3D(t) \text{ (disconnected)}$ $D(t) = \langle \times \rangle \rangle - \langle \times \rangle^2$

Much harder but essential for flavor-singlet

O(10000) configurations \times O(100) $D^{-1}[U](x,x)$

Difficulty of flavor-singlet scalar meson

• Flavor non-singlet scalar meson $S_{NS}(t) = \sum_{\vec{x}} \overline{\psi}_a(\vec{x}, t) \psi_b(\vec{x}, t) \ (a \neq b)$

$$\langle 0|S_{NS}(t)S_{NS}^{\dagger}(0)|0\rangle = \left\langle \underbrace{\left\langle \sum_{F \in F} \right\rangle}_{F \in F} \right\rangle = -C(t)$$

c.f. m_{π}, F_{π} from non-singlet pseudoscalar

O(10) configurations $\times O(1) D^{-1}[U](x,y)$

• Flavor-singlet scalar meson $S(t) = \sum_{\vec{x}} \overline{\psi}_a(\vec{x}, t) \psi_a(\vec{x}, t)$ $\langle 0|S(t)S^{\dagger}(0)|0 \rangle = -C(t) + 3D(t) \text{ (disconnected)}$ $D(t) = \langle \times \rangle \rangle - \langle \times \rangle^2$

Much harder but essential for flavor-singlet

O(10000) configurations $\times O(10) D^{-1}[U](x,x)$ using noise reduction method

'97 Venkataraman and Kilcup

Flavor-singlet scalar in $N_f = 12 \text{ QCD}$

arXiv:1305.6006

Simulation parameters

- $\beta = 4$ HISQ/Tree action Consistent with conformal phase LatKMI; PRD86(2012)054506
- Huge number of configurations measuring every 2 tarj.
- Four $m_f s$ on more than two volumes
- Noise reduction method with $N_r = 64$
- Local meson operator of $(1\otimes 1)$

L, T	m_f	confs
24,32	0.05	11000
	0.06	14000
	0.08	15000
	0.10	9000
30,40	0.05	10000
	0.06	15000
	0.08	15000
	0.10	4000
36,48	0.05	5000
	0.06	6000

Machines: φ at KMI, CX400 at Kyushu Univ.

Correlators in $N_f = 12$ ($m_f = 0.06, L = 24$ with $N_{conf} = 14000$)

-C(t) oscillates, but D(t) does not cancellation: species-singlet and non-singlet π_{SC} in D(t)thanks to small taste symmetry breaking; PRD86(2012)054506

Effective mass in $N_f = 12$ ($m_f = 0.06, L = 24$ with $N_{conf} = 14000$)

Good signal of m_{σ} from D(t)

Effective mass in $N_f = 12$ ($m_f = 0.06, L = 24$ with $N_{conf} = 14000$)

Good signal of m_{σ} from D(t)

Reasonable signals with almost 10% statistical error Systematic error from fit range dependence of D(t)Finite volume effect under control \leftarrow 2 larger volumes agree

Consistent mass from glueball operator calculation [Enrico Rinaldi: 1F]

 m_{σ} from fit of D(t) with t = 4-8

Hyperscaling test with fixed γ using larget volume at each m_f $m_\sigma = C m_f^{1/(1+\gamma)}$ with $\gamma = 0.414$ from hyperscaling of m_π Consistent hyperscaling as m_π

arXiv:1305.6006

 m_{σ} from fit of D(t) with t = 4-8

Lighter than π in all m_f Much different from usual QCD Conformal symmetry may make σ light

Summary

Flavor-singlet scalar is important in walking technicolor theory.

However, difficult due to huge noise in lattice simulation \Rightarrow Noise reduction method and Huge $N_{\text{conf}} O(10000)$

Results of $N_f = 12$ QCD (consistent with conformal phase)

- Consistent behavior with hyperscaling
- $m_{\sigma} < m_{\pi}$; much different from small N_f QCD
- Conformal symmetry may make σ light

Encouraging results for light σ in walking theory

Future perspectives

Candidate of walking theory: $N_f = 8 \text{ QCD}$ [Kei-ichi Nagai: 1F]

Important to study flavor-singlet scalar, if $m_{\sigma} \sim F_{\pi}$ Preliminary result of $N_f = 8$ QCD [Hiroshi Ohki: 1F]

Back up

$N_f =$ 12 taste symmetry breaking effect LatkMI; PRD86(2012)054506

Small taste symmetry breaking in meson masses

States in D(t) $A_H(t) = A_H \exp(-M_H t)$

Connected part $-C(t) = A_{a_0}(t) + (-1)^t A_{\pi_{SC}}(t)$

Connected + disconnected $N_f D(t) - C(t) = A_{\sigma}(t) + (-1)^t A_{\pi_{\overline{SC}}}(t)$ $\xrightarrow{\text{taste symmetric limit}} \pi_{\overline{SC}} = \pi_{SC} = \pi_{PS}$ $\pi_{\overline{SC}}$: Species-singlet but taste-non-singlet 0⁻ η in PRD76:094504(2007)

disconnected part $N_f D(t) = A_{\sigma}(t) - A_{a_0}(t) + (-1)^t \left(A_{\pi_{\overline{SC}}}(t) - A_{\pi_{SC}}(t) \right)$ $\xrightarrow{\text{taste symmetric limit}} A_{\sigma}(t) - A_{a_0}(t)$ $\Rightarrow \text{ small oscillation in } D(t) \text{ if good taste symmetry}$

arXiv:1305.6006

Lighter than π in all m_f Much different from usual QCD Conformal symmetry may make σ light

m_f dependence of m_σ/m_π

arXiv:1305.6006

Discussion

Why flavor-singlet scalar calculation is possible?

- Nice noise reduction method
- Huge N_{conf}
- Small $m_\sigma
 ightarrow$ slow exponential damp of correlator
- Small taste symmetry breaking \leftarrow improved action, large $N_f,$ etc.