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Motivation

Study hadron interactions from first principles.

Luescher's finite size formula : spectrum in a box  phase shifts.→

Method to extract the spectrum from LQCD?

Compare two methods:

► Variational method : use the time dependence of correlators.

► HAL QCD method : use the spatial information of wave functions.

I adapt the idea of HAL QCD's potential method to compare it more directly 
to the standard use of variational method + finite size formula.
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Finite size formula

Two particles of mass m interacting in a box with periodic b.c.

In the non-interacting region (r > R), the wave functions for elastic 
eigenstates satisfy the Helmoltz equation

The b.c. restrict the solutions of this equation.

Using the asymptotic behaviour of the wave functions, the allowed energies 
in the box can be related to the infinite volume phase shifts.

M. Lüscher, Nucl. Phys. B 354, 531 (1991)
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Variational method
Construct a N x N correlation matrix with elements

      (resp.            ): arbitrary source (resp. sink) operators coupling to the 
targeted eigenstates.

Insert a complete set of eigenstates,

Assuming only N eigenstates contribute, matrix relation:

Assuming                   are linearly independent, extract the energies by solving 
the generalized eigenvalue problem

with

with

sink | eigenstate eigenstate | source
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HAL QCD method I

The wave functions are computed on the lattice as

      : arbitrary source operators coupling to the targeted eigenstates.

     : interpolating operator for two particles with definite separation.

Insert a complete set of eigenstates,

with

“Combinations of eigenstates' wave functions with (i,t)-dependent coefficients.”

computed unknown
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HAL QCD method II

For a set      of source and time indices, find a linear operator U                 
(constrain the value on a few vectors  many possibilities) s.t.→

This leads to,

Assuming only        eigenstates contribute and                                are linearly 
independent, the contributing eigenstates satisfy

i, t independent

by linearity using the time dependence of an
i

“Find a functional relation on enough combinations that it must hold for each eigenstate.”
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HAL QCD method III

The contributing eigenstates' wave functions can be recovered by solving 
the eigenvalue problem

For contributing elastic eigenstates, the wave function satisfies the 
Helmoltz equation outside the interacting region

Their associated eigenvalues       can thus be related to the phase shifts of 
the system through the finite size formula.
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Workflow

Lattice simulations

Correlation matrices

Wave functions



  

9 of 19

Workflow
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Eigenstate energies

                          

Variational method

Solve the generalized
eigenvalue problem

Eigenstate wave functions
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Workflow
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Find an operator U s.t.
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Workflow

Lattice simulations

Correlation matrices

Wave functions

Eigenstate energies

                          

Variational method

Solve the generalized
eigenvalue problem

HAL QCD method

Find an operator U s.t.

Solve the eigenvalue problem

Eigenstate wave functions

                          

Eigenstate wave functions

                          
Eigenstate energies
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Numerical application

Isospin 2 pion-pion system

► Simple system which allows a thorough comparison.

► Compute the wave functions for 5 momentum wall sources

Spin singlet nucleon-nucleon system in the SU(3) limit

► More complex system where the variational method is limited.

► Compute the wave function for the wall source.

For a first comparison, we take the simple operator                                      .
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Lattice details

Clover fermions + Iwasaki gauge action

I=2 ππ

► Configurations generated by the PACS-CS collaboration.

► 323 x 64 lattice, κud = 0.1370, κs = 0.1364, a = 0.09 fm, β=1.9

► mπ = 0.7 GeV

SU(3) NN

► 243 x 32 lattice, κuds = 0.1376, a = 0.12 fm, β=1.83

► mp.s. = 0.8 GeV, moct. bar. = 1.7 GeV
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I=2 ππ: wave functions
Time dependence of the wave function for the first source.
Wave functions normalized by their means to compare the shape.

No ground state saturation, even at large t.



  

15 of 19

I=2 ππ: operator

Functional equation with this U is valid for t = 12 ~ 16

Diagonal operator
Constraints:
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I=2 ππ: spectrum
variational method with 5 sources HAL QCD method with 1 source
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I=2 ππ: spectrum

variational method with 5 sources

HAL QCD method with 1 source

free energy

Errors may be underestimated.
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NN: energy shift

Normalization by 2-pt function: better signal but no control on time dependence.

“variational method” HAL QCD method
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Summary

Adapting the idea of HAL QCD's potential method, I presented a method to 
get the spectrum in a finite box from wave functions computed in LQCD.

I compared it numerically to the variational method for two systems.

Consistent results from two very different methods (time dependence vs 
spatial dependence).

Several eigenstates energies from one source in ππ.

Future:

► Use more general operators U to account for more eigenstates.

► Check systematic error by changing U.

► Apply to other two-particle systems.
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