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Introduction

Maiani Testa no-go theorem says that one cannot get S-matrix (above
threshold) from infinite-volume Euclidean-time correlators.1

In finite volume the no-go theorem does not apply.

Indeed, Lüscher derived a relation between

finite-volume spectrum of QCD Hamiltonian (below four pion masses)
and

phase shift for elastic two-pion scattering.234

This method has been used extensively, providing scattering predictions
from first principles QCD.

1Maiani, L. & Testa, M. Phys.Lett. B245, 585–590 (1990).
2Luescher, M. Commun. Math. Phys. 104, 177 (1986).
3Luescher, M. Commun. Math. Phys. 105, 153–188 (1986).
4Luescher, M. Nucl. Phys. B354, 531–578 (1991).
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Introduction

There has, however, so far been no lattice calculation of S-matrix elements
above inelastic threshold.

Here one should distinguish between
a) systems with multiple, strongly-coupled, two-particle channels
b) systems with one or more, strongly-coupled, (N > 2)-particle channels

In the first case, the formalism for determining S-matrix from
finite-volume spectrum is well understood.567

5Bernard, V. et al. JHEP 1101, 019 (2011).
6Briceno, R. A. & Davoudi, Z. arXiv:1204.1110 [hep-lat] (2012).
7Hansen, M. T. & Sharpe, S. R. Phys.Rev. D86, 016007 (2012).
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Introduction

Important progress has also been made for the simplest (N > 2)-particle
cases:

two-to-three and three-to-three scattering.89

However, a relativistic, model-independent relation between
finite-volume spectrum and S-matrix for three-particle states is still
unavailable.

This is the subject of this talk.

8Polejaeva, K. & Rusetsky, A. Eur.Phys.J. A48, 67 (2012).
9Briceno, R. A. & Davoudi, Z. arXiv:1212.3398 [hep-lat] (2012).
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Finite-volume set-up
Here finite volume means...

finite, cubic spatial volume (extent L)

periodic boundary conditions [~p ∈ (2π/L)Z3]

time direction infinite.

Assume L large enough to ignore exponentially suppressed (e−mL)
corrections. Neglect e−mL throughout.

Assume continuum field theory throughout.

Allow non-zero total momentum in finite-volume frame...

total energy E

total momentum ~P

(
~P = (2π/L)~nP ~nP ∈ Z3

)
CM frame energy E ∗

(
E ∗2 = E 2 − ~P2

)
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Particle content set-up

Restrict particle content to

single scalar with mass m. So all results for identical particles.

interactions governed by local relativistic field theory, with Z2

symmetry. (G-parity for pions)

Restrict CM energy, m < E ∗ < 5m.

Theory is otherwise arbitrary...

include all operators with an even number of scalar fields

make no assumptions about relative coupling strength
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Derivation

We relate spectrum to scattering via finite-volume correlator10

CL(E , ~P) ≡
∫
L
d4xe i(−

~P·~x+Ex0)〈0|Tσ(x)σ†(0)|0〉 ,

where σ is odd-particle interpolating field.

All E for which CL(E , ~P) diverges are in the finite-volume spectrum.
So, we determine a condition of divergence, to all orders in
perturbation theory.

Result depends on
two-to-two scattering amplitude: iM
three-to-three scattering amplitude: iM3→3

10Kim, Sachrajda and Sharpe. Nucl.Phys. B727, 218–243 (2005).
M. T. Hansen (FNAL/UW) Three relativistic bosons in a box 7 / 22



Finite-volume correlator

Due to finite-volume condition, loop-momenta in diagrams are summed

1

L3

∑
~p

for ~p ∈ (2π/L)Z3 .

For smooth function, difference between sum and integral is exponentially
suppressed.

Only keep sums when summand diverges. This happens when intermediate
states go on-shell, which is only possible for three-particle states.
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Skeleton expansion
Deduce skeleton expansion, which keeps all 1/Ln corrections to CL(E , ~P)

+

+

+

CL(E, ~P ) = ++

+ +

+

+ +

+ · · ·

+ + + · · ·

+ · · ·

+ · · ·

+ · · ·

1

Here boxes indicate remaining summed loops.

All other loops inside
kernels, with

∑→ ∫
+ · · ·

iK2→2 ≡ + + · · ·+

+iK3→3 ≡ +

1
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Detailed analysis: No switches

Begin by considering diagrams with iK2→2 insertions all on same pair

C
(1)
L ≡

k

+ + · · ·++

1

Important finite-volume effects from k0 = ωk =
√
~k2 + m2, which gives

singularity from on-shell state.

Setting k0 = ωk generates two-particle diagrams with energy-momentum
(E − ωk , ~P − ~k)

C
(1)
L =

1

L3

∑
~k

1

2ωk
+ + + · · ·+

1
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Detailed analysis: No switches
Next use the identity

off-shell

= +

F

on-shell

Third term represents

σiFσ† = (row vector)×(matrix)×(column vector)
where entries of σ, σ† are coefficients of Y`,m decomposition.

C
(1)
L =

1

L3

∑
~k

1

2ωk

+

F F F F F

+ + · · ·++

+ + +

1
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Detailed analysis: No switches

Regroup terms by number of iF insertions

C
(1)
L = C (1)

∞

+
1

L3

∑
~k

1

2ωk

+

F F F F F F F F F

+ + + · · ·

+ + · · ·++

F

1

We deduce

C
(1)
L − C (1)

∞ = (σ + A
′(1,u))

iF

2ωL3
1

1− iMiF
(σ† + A(1,u))− σ iF

3ωL3
σ† ,

where second term is from extra symmetry factor.
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Detailed analysis: No switches

C
(1)
L − C (1)

∞ = (σ + A
′(1,u))

iF

2ωL3
1

1− iMiF
(σ† + A(1,u))− σ iF

3ωL3
σ† .

Lots of notation here!

Structure is (row vector)×(matrix)×(column vector) on product space

[finite-volume momentum]×[angular momentum]

For example iM is short for the diagonal matrix iMk ′,`′,m′;k,`,m

(with k , k ′ ∈ (2π/L)Z3)

4πY ∗`′,m′(k̂ ′∗)iMk ′,`′,m′;k,`,mY`,m(k̂∗) ≡ δkk ′ iM(E − ωk , ~P − ~k, k̂ ′∗, k̂∗)

Understanding matrix structure is crucial to understanding result.
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Detailed analysis: No switches

C
(1)
L − C (1)

∞ = (σ + A
′(1,u))

iF

2ωL3
1

1− iMiF
(σ† + A(1,u))− σ iF

3ωL3
σ† .

Other matrix entering the result is

iFk ′,k ≡ δk ′,k
1

2

[
1

L3

∑
~a

−
∫
~a

]
i4πY (â∗)Y ∗(â∗)

2ωa2ωP−k−a(E − ωk − ωa − ωP−k−a + iε)
.

Now introduce shorthand[
A
]
≡ iF

2ωL3
1

1− iMiF
.

Think of this as a new kind of cut

(σ + A
′(1,u))

[
A
]
(σ† + A(1,u)) ≡

A
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Bottom particle free

Compare this to theory with bottom particle non-interacting

Then C
(1)
L − C

(1)
∞ is the full correlator, but with second term omitted.

Correlator diverges whenever det[1− iMiF ] = 0. Or when

det
ang mom

[1− iMiF ]k=(0,0,0) × det
ang mom

[1− iMiF ](2π/L,0,0) × · · · = 0 ,

for all ~k ∈ (2π/L)Z3. Just as expected!
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Detailed analysis: No switches

Returning to our identical-particle theory

C
(1)
L − C (1)

∞ = (σ + A
′(1,u))

[
A
]
(σ† + A(1,u))− σ iF

3ωL3
σ† ,

we stress that the sum over ~k includes terms for which

E ∗22 ≡ (E − ωk)2 − (~P − ~k)2 < 4m2 .

Values below but close to E ∗2 = 2m must be included.11

However, when E ∗2 . m then iF is suppressed so that contributions can be
neglected.

11Polejaeva, K. & Rusetsky, A. Eur.Phys.J. A48, 67 (2012).
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Detailed analysis: One switch

C
(2)
L ≡ + · · ·+ +

1

In this case we have two “spectator momenta”
[two momenta that do not appear in two-particle loops].

Evaluating contour integrals and separating out infinite-volume gives

C
(2)
L − C (2)

∞ = (σ + A
′(1,u))

[
A
]
iM(2,unsym.)

3→3

[
A
]
(σ† + A(1,u)) + · · · ,

+ · · ·
AA

=

where the ellipsis represents terms that modify the endcaps of C
(1)
L − C

(1)
∞ .
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Detailed analysis: One switch

C
(2)
L − C (2)

∞ = (σ + A
′(1,u))

[
A
]
iM(2,unsym.)

3→3

[
A
]
(σ† + A(1,u)) + · · ·

Here

iM(2,unsym.)
3→3;k ′,`′,m′;k,`,m ≡

`,m{
}`′,m′

~k

~k′

1

Observe that certain ~k and ~k ′ put intermediate propagator on-shell.

Implies that iM3→3 has physical pole above threshold

To reach a physical result this diagram must combine with

}`′,m′
}`′,m′
~k′

`,m{
~k

`,m{
~k

~k′

1

But Y`,m decomposition fails here. Amounts to

1

cos θ
≈ A + B cos θ garbage!
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Divergence free three-to-three amplitude

Resolution is to introduce

iM(2,unsym.)
df ,3→3 ≡ iM(2,unsym.)

3→3 − iM i

2ω(E − 3ω)
iM .

iM(2,unsym.)
df ,3→3 is finite

Decompose in Y`,m (even after symmetrization)

For low energies, truncation of decomposition is good approximation

The approach of separating out singularities like this was first suggested
over 40 years ago.12

Makes sense to recover singularity-free quantity from finite-volume
spectrum! Then add singular terms back.

12 Rubin et al. PR 146-4 (1966).
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Divergence free three-to-three amplitude
Define

iMdf ,3→3 ≡ iM3→3

−
[
iM i

2ω(E − 3ω)
iM+

∫
iM i

2ω(E − 3ω)

1

2ω
iM i

2ω(E − 3ω)
iM+ · · ·

]
,

S

+ · · ·+

S S

where · · · indicates infinite series of with additional iM.

This definition of iMdf ,3→3 arises naturally in our investigation of
the finite-volume theory.
It is the observable to be extracted from the spectrum.

We stress that, once extracted, it can be combined with the iM dependent
terms to recover the usual three-to-three scattering amplitude iM3→3.
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The relativistic, model-independent relation between finite-volume
spectrum and scattering amplitudes

det[F−1three + iMdf ,3→3] = 0 ,

where

Fthree ≡
1

2ωL3

[
(2/3)iF − 1

[iF ]−1 − [1− iMiG ]−1 iM

]

iGk,p =
1

2ωpL3
i4πY (p̂∗)Y ∗(k̂∗)

2ωP−p−k(E − ωp − ωk − ωP−p−k)
,

iFk,k ′ = δk,k ′
1

2

[
1

L3

∑
~a

−
∫
~a

]
i4πY (â∗)Y ∗(â∗)

2ωa2ωP−k−a(E − ωk − ωa − ωP−k−a + iε)
.

Here harmonic indices have been left implicit.

This is the main result of the talk.
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Conclusion

We have given a relativistic, model-independent relation between
three-particle S-matrix elements and the finite-volume spectrum.

The next step is to map out the spectrum in the full range 3m < E ∗ < 5m
for realistic scattering amplitude inputs.

Also interesting would be an attempt to weakly perturb our relation, in
order to get a generalization of the Lellouch-Lüscher relation between
finite- and infinite-volume weak decay matrix elements.

Supported by the Fermilab Fellowship in Theoretical Physics
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Backup Slides
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Suggestive comment concerning iMdf ,3→3

From Three particle scattering rates and singularities of the T-matrix by
Potapov and Taylor, PRA 16-6, 1977

It is well known, of course, that the three-particle T matrix has
singularities in its physical region. [For example there is] a
doublescattering singularity; these come about because the three particles
can undergo two. separate collisions in pairs.
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Suggestive comment concerning iMdf ,3→3

From Dispersion Relations for Three-Particle Scattering Amplitudes by
Rubin, et.al, PR 146-4, 1966

[Physical singularities] will not, of course, prevent us from projecting states
of definite total angular momentum... On the other hand, because of the
rescattering singularities, the partial-wave expansion is not expected to
converge uniformly. It is interesting to realize that in this respect the case
of two-body scattering via short-range forces is unique...If we denote by
TR the contribution of the rescattering singularities to the amplitude T , so
that T − TR is free of singularities in the physical region, we can expand
T − TR in partial waves and write

T = TR +
∑
J

(T − TR)J . (1)

We can then approximate T by truncating the series for T − TR . This
approximation scheme is feasible because, as we have seen, TR is
given in terms of the two-body amplitudes.
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Summing maximally singular terms

Let us focus on one of the pieces that appears inside

Fthree ≡
1

2ωL3

[
(2/3)iF − 1

[iF ]−1 − [1− iMiG ]−1 iM

]
namely

X ≡ 1

1− iMiG
iM ,

where

iGk,p =
1

2ωpL3
i4πY (p̂∗)Y (k̂∗)

2ωP−p−k(E − ωp − ωk − ωP−p−k)
.

X is sum of all maximally singular diagrams.
Cannot decompose singularities in harmonics, so use a matrix in
momentum space.
Legitimate to truncate the matrix with function which smoothly goes to
zero below threshold. Must put the same truncation in iMdf ,3→3.
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Divergence free three-to-three amplitude
Define

iMdf ,3→3 ≡ iM3→3

−
[
iM i

2ω(E − 3ω)
iM+

∫
iM i

2ω(E − 3ω)

1

2ω
iM i

2ω(E − 3ω)
iM+ · · ·

]
.

S

+ · · ·+

S S

For degenerate particles, subtracting the first two terms is sufficient to
render iMdf ,3→3 finite.

For arbitrary particle masses, the infinite set must be subtracted to get a
finite quantity.
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