Wave functions of the Nucleon and the $N^*(J^P = 1/2^-)$

Rainer W. Schiel¹

Institut für Theoretische Physik, Universität Regensburg

July 30, 2013

¹V. M. Braun, S. Collins, M. Göckeler, A. Schäfer, A. Sternbeck, P. Wein

Nucleon Wave Functions

Consider the three-guark Fock-state in the infinite-momentum frame

In leading twist

- with transverse momentum components integrated out
- the nucleon wave function can be written as

$$|N,\uparrow\rangle = f_N \int \frac{[dx]\varphi(x_i)}{2\sqrt{24x_1x_2x_3}} \{|u^{\uparrow}(x_1)u^{\downarrow}(x_2)d^{\uparrow}(x_3)\rangle - |u^{\uparrow}(x_1)d^{\downarrow}(x_2)u^{\uparrow}(x_3)\rangle\}$$

where

- x_i: longitudinal momentum fractions
- ∫[dx] = ∫₀¹ dx₁ dx₂ dx₃ δ(1 − x₁ − x₂ − x₃)
 f_N: Leading-twist normalization constant, "Wave function at the Origin"
- $\varphi(x_i)$: Nucleon Distribution Amplitude

Nucleon Wave Functions

- Consider the three-quark Fock-state in the infinite-momentum frame
- In leading twist
 - with transverse momentum components integrated out
 - the nucleon wave function can be written as

$$|N,\uparrow\rangle = f_N \int \frac{[dx]\varphi(x_i)}{2\sqrt{24x_1x_2x_3}} \{|u^{\uparrow}(x_1)u^{\downarrow}(x_2)d^{\uparrow}(x_3)\rangle - |u^{\uparrow}(x_1)d^{\downarrow}(x_2)u^{\uparrow}(x_3)\rangle\}$$

• Expand wave function in multiplicatively renormalizable terms [Braun, Manashov, Rohrwild]:

$$\begin{split} \varphi(x_i;\mu^2) =& 120x_1x_2x_3 \Big\{ 1 + c_{10}(x_1 - 2x_2 + x_3)L^{\frac{8}{3\beta_0}} + c_{11}(x_1 - x_3)L^{\frac{20}{9\beta_0}} \\ &+ c_{20} \left[1 + 7(x_2 - 2x_1x_3 - 2x_2^2) \right]L^{\frac{14}{3\beta_0}} + c_{21} \left(1 - 4x_2 \right) \left(x_1 - x_3 \right)L^{\frac{9}{9\beta_0}} \\ &+ c_{22} \left[3 - 9x_2 + 8x_2^2 - 12x_1x_3 \right]L^{\frac{9}{9\beta_0}} + \dots \Big\} \end{split}$$

• where $L \equiv \alpha_s(\mu)/\alpha_s(\mu_0)$ • c_{ii} : "shape parameters"

Nucleon Wave Functions

- Consider the three-quark Fock-state in the infinite-momentum frame
- In leading twist
 - with transverse momentum components integrated out
 - the nucleon wave function can be written as

$$|N,\uparrow\rangle = f_N \int \frac{[dx]\varphi(x_i)}{2\sqrt{24x_1x_2x_3}} \{ |u^{\uparrow}(x_1)u^{\downarrow}(x_2)d^{\uparrow}(x_3)\rangle - |u^{\uparrow}(x_1)d^{\downarrow}(x_2)u^{\uparrow}(x_3)\rangle \}$$

• Expand wave function in multiplicatively renormalizable terms [Braun, Manashov, Rohrwild]:

$$\begin{split} \varphi(x_{i};\mu^{2}) = & 120x_{1}x_{2}x_{3} \Big\{ 1 + c_{10}(x_{1} - 2x_{2} + x_{3})L^{\frac{8}{3\beta_{0}}} + c_{11}(x_{1} - x_{3})L^{\frac{20}{9\beta_{0}}} \\ &+ c_{20} \left[1 + 7(x_{2} - 2x_{1}x_{3} - 2x_{2}^{2}) \right]L^{\frac{14}{3\beta_{0}}} + c_{21} \left(1 - 4x_{2} \right) \left(x_{1} - x_{3} \right)L^{\frac{40}{9\beta_{0}}} \\ &+ c_{22} \left[3 - 9x_{2} + 8x_{2}^{2} - 12x_{1}x_{3} \right]L^{\frac{32}{9\beta_{0}}} + \ldots \Big\} \end{split}$$

- In next-to-leading twist
 - obtain information about the orbital angular momentum of the quarks
 - λ₁, λ₂: Next-to-leading twist normalization constants

Motivation

- The wave functions of quarks in hadrons by themselves are interesting quantities
- Calculation of form factors from first principles is a challenge
- Light-Cone Sum Rules relate form factors to distribution amplitudes
- Post- and prediction of form factor data is possible once wave functions are known
- Compare theory results to experiment: JLab, FAIR,

The calculation of Distribution Amplitudes from LQCD requires the following steps:

- Use operators that transform according to irreducible representations of the spinorial hypercubic group H(4) [Kaltenbrunner et al., Eur.Phys.J.C55(2008)387]
- Calculate non-perturbative renormalization constants for these operators
 - Non-perturbative renormalization and 1-loop-conversion RI-MOM \rightarrow \overline{MS} have been performed by [Göckeler *et al.* [QCDSF], Nucl.Phys.B812 (2009) 205]
 - 2-loop-conversion factors are in progress
- Compute matrix elements of the operators on the lattice
 - Calculate two-point functions of the form

$$\langle \mathcal{O}(\mathbf{x})_{lpha\beta\gamma}\bar{\mathcal{N}}(\mathbf{y})_{ au}\rangle$$

- Extrapolate $m_{\pi}
 ightarrow m_{\pi}^{\mathsf{phys}}, \ V
 ightarrow \infty$ and a
 ightarrow 0
 - Leading-one-loop baryon \(\chi PT\) formulae including finite volume correction terms for the nucleon have been worked out by Wein *et al.* [Eur.Phys.J.A47 (2011) 149]
 - Several pion masses, volumes and lattice spacings available

Lattices used ($N_f = 2$ Clover Wilson Fermions)

κ	$m_{\pi}/ { m MeV}$	Size	# Configurations
eta = 5.20, $a =$ 0.0815 fm			
0.13596	280	$32^3 imes 64$	1079*
eta = 5.29, $a =$ 0.0715 fm			
0.13620	428	$24^3 imes 48$	1170
0.13632	306	$24^3 imes 48$	540
0.13632	295	$32^3 imes 64$	950
0.13632	288	$40^{3} \times 64$	2026
0.13640	158	$48^{3} \times 64$	3499
0.13640	151	$64^3 imes 64$	1080
eta = 5.40, $a =$ 0.0605 fm			
0.13640	495	$32^{3} \times 64$	1124
0.13660	260	$48^{3} \times 64$	2178

*Thanks to W. Söldner for simulating this in "record time"

Nucleon: Leading twist normalization constant f_N

Rainer W. Schiel (Regensburg)

Wave functions of the Nucleon and the $N^*(J^P = 1/2^-)$

Nucleon: Next-to-leading twist normalization constant λ_1

(preliminary result)

Rainer W. Schiel (Regensburg)

Nucleon: Next-to-leading twist normalization constant λ_2

(preliminary result)

Nucleon: Shape parameters

(preliminary results)

Nucleon Shape Parameters: Lattice vs. QCD Sum Rules and data-driven wave functions

- QCD sum rule wave functions of King-Sachrajda, Chernyak-Zhitnitsky and Chernyak-Ogloblin-Zhitnitsky ruled out
- Data-driven wave functions of Bolz-Kroll and Braun-Lenz-Wittmann are in reasonable agreement with lattice results

10/18

Negative Parity: Separation of states

- Get negative parity with "projection" operator $\frac{1}{2} \left(1 \frac{m_N}{E_N} \gamma_4 \right)$
- Melnitchouk *et al.* [Phys.Rev.D67 (2003) 114506] have shown that two negative parity states can be separated using the interpolators $\mathcal{O}_1 = (uC\gamma_5 d)u$ and $\mathcal{O}_2 = (uCd)(\gamma_5 u)$
- Alexandrou *et al.* [arXiv:1302.4410] have shown that mass of ground state is consistent with $m_N + m_{\pi}$:

Negative Parity: Three Interpolators

• Verduci and Lang [Phys.Rev.D87 (2013) 054502] (talk on Fri) have extended this study to essentially three interpolating currents: \mathcal{O}_1 , \mathcal{O}_2 and a five-quark interpolator

PHYSICAL REVIEW D 87, 054502 (2013) 1.8 1.6 E[GeV] 1.4 1.2 1.0 N Ν.Νπ Exp.

FIG. 4 (color online). Comparison of the energy levels. Left: physical mass values (experiment). Middle: result when using only 3-quark interpolators. Right: result when pion-nucleon interpolators are included. The dashed lines indicate the scattering thresholds.

Negative Parity: Three Interpolators

- Verduci and Lang [Phys.Rev.D87 (2013) 054502] (talk on Fri) have extended this study to essentially three interpolating currents: O₁, O₂ and a five-quark interpolator
- Inspection of eigenvectors suggested picture on right

FIG. 4 (color online). Comparison of the energy levels. Left: physical mass values (experiment). Middle: result when using only 3-quark interpolators. Right: result when pion-nucleon interpolators are included. The dashed lines indicate the scattering thresholds.

$N^*(J^P = 1/2^-)$: Masses

(preliminary result)

• Mass of ground state not always consistent with $m_N + m_\pi \leftarrow$ smearing?, fit range?

$N^*(J^P = 1/2^-)$: Masses

(preliminary result)

- Mass of ground state not always consistent with $m_N + m_\pi \leftarrow$ smearing?, fit range?
- Following Verduci and Lang, we will label the lower mass state "1650?" and the higher mass state "1535?"

$N^*(J^P = 1/2^-)$: Leading twist normalization constant

(preliminary results)

$N^*(J^P = 1/2^-)$: Next-to-leading twist normalization constants

Wave functions of the Nucleon and the $N^*(J^P = 1/2^-)$

$N^*(J^P = 1/2^-)$: First order shape parameters

(preliminary results)

Wave functions of the Nucleon and the $N^*(J^P = 1/2^-)$

Barycentric plot of the wave functions

Only first moments used for this plot

(preliminary results)

Barycentric plot of the wave functions

Only first moments used for this plot

(preliminary results)

Barycentric plot of the wave functions

Only first moments used for this plot

• Difference between the two *N**s not surprising [PDG]:

•
$$N^*(1535) \to N\pi(45\%), \to N\eta(40\%)$$

• $N^*(1650) \to N\pi(70\%), \to N\eta(10\%), \to N\pi\pi(15\%)$

Conclusions and Outlook

- *f_N*, *f_{N*}*, λ₁, λ₂ and the first moments of the nucleon and *N*^{*}(*J^P* = 1/2⁻) distribution amplitudes are "in good shape"
- Second moments need yet higher statistics
- Further investigation of discretization effects required
- Identification of negative parity states?
- $N_f = 2 + 1$ might give an answer!

