B decay to radially excited D

Benoît Blossier

Lattice 2013, Mainz, 29 July - 3 August 2013

- Excited *D* mesons states in questions
- $B \rightarrow D'$ non leptonic decay
- Lattice measurement of $f_{D'}/f_D$
- Outlook

D. Becirevic, BB, A. Gérardin, A. Le Yaouanc and F. Sanfilippo, *Nucl. Phys.* B **872**, 313 (2013) [arXiv:1301.7336 [hep-ph]]

Excited *D* **meson states in questions**

Recently the BaBar Collaboration claimed to have isolated a couple of excited *D* states [BaBar Collaboration, '11]

 $D\pi$ distribution: a clear peak is observed for $D_2^*(2460)$, "enhancements" are seen and correspond to $D^*(2600)$ and $D^*(2760)$ $D^*\pi$ distribution: a peak is visible for $D_1(2420 \text{ and } 2 \text{ structures are observed, interpreted}$ as $D(2550) \equiv D'$ and D(2750)

A fit gives m(D') = 2539(8) MeV and $\Gamma(D') = 130(18)$ MeV

Excited *D* **meson states in questions**

Recently the BaBar Collaboration claimed to have isolated a couple of excited *D* states [BaBar Collaboration, '11]

Question: is this interpretation correct? Popular quark models obtain roughly the same mass (2580 MeV) but a much smaller width (70 MeV) [F. Close and E. Swanson, '05; Z. Sun *et al*, '10]

 \bigcirc Radial excitations are very sensitive to the position of the nodes of wave functions, that depends strongly on the model.

j_l^P	J^P	ground state	radial excitation
$\frac{1}{2}^{-}$	0-	Н	H'
	1-	H^*	${H^*}'$
$\frac{1}{2}^+$	0+	H_0^*	${H_0^*}'$
	1^{+}	H_1^*	${H_1^*}'$
$\frac{3}{2}^{+}$	1+	H_1	H_1'
	2^{+}	H_2^*	${H_2^*}'$

 $J = \frac{1}{2} \oplus j_l, H = B, D$

Question: could this potentially large $B \to D' l\nu$ width explain the "1/2 vs. 3/2 puzzle"? $[\Gamma(B \to D_{1/2} l\nu) \simeq \Gamma(B \to D_{3/2} l\nu)]^{exp}$ while $[\Gamma(B \to D_{1/2} l\nu) \ll \Gamma(B \to D_{3/2} l\nu)]^{th}$ [V. Morénas *et al*, '01; N. Uraltsev, '04]

In the OPE formalism, a large $B \to D'$ form factor is going together with a small suppression of $B \to D^{(*)}$ form factors [P. Gambino *et al*, '12]

Question: can a large $B \to D'$ form factor solve the tension of $\sim 3\sigma$ observed between V_{cb}^{excl} and V_{cb}^{incl} ? [M. Bona *et al*, '10; J. Charles *et al*, '11]

Non leptonic $B \rightarrow D'$ **decay**

Our proposal: let's look at $B \to D'\pi$ non leptonic decay to check the largeness of $\mathcal{B}(B \to D' l \nu)$

Class I non leptonic decay

Theoretical estimates of $f_{+}^{B \to D'}(0)$ are in the range [0.1, 0.4][F. Bernlochner *et al*, '12; D. Ebert *et al*, '99; N. Faustov and V. Galkin, '12; Z. Wang *et al*, '12]

 $\mathcal{B}(\bar{B}^0 \to D'^+ \pi^-)^{\text{th}} \sim 10^{-4}$: it can be measured with the B factories samples and at LHCb.

Class III decay

Factorised amplitude:

$$A_{\text{fact}}^{III} = -i\frac{G_F}{\sqrt{2}}V_{cb}V_{ud}^* \left[a_1 f_{\pi} [m_B^2 - m_{D'}^2] f^{B \to D'}(m_{\pi}^2) + a_2 f_{D'} [m_B^2 - m_{\pi}^2] f^{B \to \pi}(m_{D'}^2) \right]$$

Normalisation by the Class I decay

$$\frac{\mathcal{B}(B^- \to D^{\prime 0} \pi^-)}{\mathcal{B}(\bar{B}^0 \to D^{\prime +} \pi^-)} = \frac{\tau_{B^-}}{\tau_{\bar{B}^0}} \left[1 + \frac{a_2}{a_1} \times \frac{m_B^2 - m_\pi^2}{m_B^2 - m_{D^\prime}^2} \times \frac{f_0^{B \to \pi}(m_{D^\prime}^2)}{f_+^{B \to D^\prime}(0)} \frac{f_{D^\prime}}{f_D} \frac{f_D}{f_\pi} \right]^2$$

 a_2/a_1 determined from $\frac{\mathcal{B}(B^- \to D^0 \pi^-)}{\mathcal{B}(\bar{B}^0 \to D^+ \pi^-)}$, known experimentally

 f'_D/f_D and f_D/f_{π} extracted from lattice QCD simulations

Lattice measurement of $f_{D'}/f_D$

Lattice set up

N_f	action	a	$m_{ m sea}$	configurations
2	MtmQCD	[0.055, 0.1] fm	$[m_s/6, m_s/2]$	ETMC ensembles
2	Wilson-Clover	0.065 fm	$\sim m_s$	QCDSF ensembles
0	Wilson-Clover	0.065 fm		

Alternative approach: Generalised Eigenvalue Problem

Interpolating fields $P_{D_q i} \equiv \bar{\psi}_{c i} \gamma^5 \psi_{q i}$, different Gaussian smearing levels *i* are used to build a matrix of correlators $C_{D_q D_q ij}(t)$

$$\psi_{q\,i} = \left(1 + \frac{\kappa_G}{1 + 6\kappa_G}\Delta\right)^i, \, \kappa_G = 4.0, \, i = \{0, \, 2, \, 10, 32\}$$

Solving the GEVP: $C_{D_q D_q ij}(t) v_j^{(n)}(t, t_0) = \lambda^{(n)}(t, t_0) C_{D_q D_q ij}(t_0) v_j^{(n)}(t, t_0)$ $\widetilde{P}_{D_q}^{(n)}(t, t_0) = \sum_i v_i^{(n)}(t, t_0) P_{D_q i} \quad \langle D_q^{(m)} | \widetilde{P}_{D_q}^{(n)\dagger} | 0 \rangle = A_n \delta_{mn}$

Effective mass:
$$m_{D_q^{(n)}}^{\text{eff}}(t) = \operatorname{arccosh}\left[\frac{\lambda^{(n)}(t+1,t_0) + \lambda^{(n)}(t-1,t_0)}{2\lambda^{(n)}(t,t_0)}\right]$$

Decay constant:
$$\mathcal{Z}_{D_q^{(n)}} = \lim_{t \to \infty} \frac{\sqrt{A_n} \sum_i C_{D_q D_q 0i}(t) v_i^{(n)}(t,t_0)}{\sum_{ij} v_i^{(n)}(t,t_0) C_{D_q D_q ij}(t) v_j^{(n)}(t,t_0)}$$

Combined fit of ETMC data at different a and m_{sea} :

 $(m_{D'}/m_D)^{\text{exp}} = 1.36$: is there any issue?

• MtmQCD breaks parity at finite lattice spacing \implies calculation made with Wilson-Clover fermions at $a \sim 0.065$ fm:

MtmQCD:
$$\frac{m_{D'_s}}{m_{D_s}}\Big|_{a=0.065\text{fm}} = 1.55(6)$$
 $\frac{f_{D'_s}}{f_{D_s}}\Big|_{a=0.065\text{fm}} = 0.69(5)$
Clover: $\frac{m_{D'_s}}{m_{D_s}}\Big|_{a=0.065\text{fm}} = 1.48(7)$ $\frac{f_{D'_s}}{f_{D_s}}\Big|_{a=0.065\text{fm}} = 0.77(9)$

Combined fit of ETMC data at different a and m_{sea} :

 $(m_{D'}/m_D)^{\text{exp}} = 1.36$: is there any issue?

• At $N_f = 2$, channels with a pion or a kaon in the final state may open: D' can decay into $D^*\pi$ (P wave) and $D_0^*\pi$ (S wave), D'_s into D^*K and D_{s0}^*K . No such a "danger" in the quenched approximation!

$$N_{f} = 0: \qquad \frac{m_{D'_{s}}}{m_{D_{s}}}\Big|_{a=0.065\text{fm}} = 1.41(9) \qquad \frac{f_{D'_{s}}}{f_{D_{s}}}\Big|_{a=0.065\text{fm}} = 0.67(12)$$
$$N_{f} = 2: \qquad \frac{m_{D'_{s}}}{m_{D_{s}}}\Big|_{a=0.065\text{fm}} = 1.48(7) \qquad \frac{f_{D'_{s}}}{f_{D_{s}}}\Big|_{a=0.065\text{fm}} = 0.77(9)$$

Back to phenomenology

Lattice inputs: $m_{D'}/m_D = 1.55(9)$ $f_{D'}/f_D = 0.57(16)$ $f_D/f_{\pi} = 1.56(3)(2)$ Phenomenological inputs: $a_2/a_1 = 0.368$ $\tau_{\bar{B}^0}/\tau_{B^-} = 1.079(7)$ $f_+^{B\to D}(0) = 0.64(2)$ $f_0^{B\to\pi}(m_D^2) = 0.29(4)$

$$\frac{\mathcal{B}(B^- \to D^{\prime 0} \pi^-)}{\mathcal{B}(\bar{B}^0 \to D^{\prime +} \pi^-)} = \frac{\tau_{B^-}}{\tau_{\bar{B}^0}} \left[1 + \frac{0.14(4)}{f_+^{B \to D^{\prime}}(0)} \right]^2$$

$$\frac{\mathcal{B}(\bar{B}^0 \to D'^+ \pi^-)}{\mathcal{B}(\bar{B}^0 \to D^+ \pi^-)} = (1.24 \pm 0.21) \times |f_+^{B \to D'}(0)|^2$$
$$\frac{\mathcal{B}(\bar{B}^0 \to D'^+ \pi^-)}{\mathcal{B}(\bar{B}^0 \to D^+ \pi^-)} \Big|_{(m_{D'}/m_D)^{\exp}} = (1.65 \pm 0.13) \times \left|f_+^{B \to D'}(0)\right|^2$$

This ratio does not depend so much on $m_{D'}$

Fixing $f_{+}^{B \to D'}(0) = 0.4$ and taking $(m_{D'}/m_D)^{exp}$ we have also:

$$\frac{\mathcal{B}(\bar{B}^0 \to D'^+ \pi^-)}{\mathcal{B}(\bar{B}^0 \to D_2^{*+} \pi^-)} = 1.6(3)$$
$$\frac{\mathcal{B}(B^- \to D'^0 \pi^-)}{\mathcal{B}(B^- \to D_2^{*0} \pi^-)} = 1.4(3)$$

Conclusion: if $f_+^{B\to D'}$ is large, as claimed by many authors, the measurement of $\mathcal{B}(B\to D'\pi)$ should be as feasible as $\mathcal{B}(B\to D_2^*\pi)$

Outlook

- Excited meson states are massively produced in experiments. To exploit fruitfully the numerous data at *B* factories and LHCb, theorists do have to put an important effort in confronting their models predictions with measurements, by proposing to experimentalists unambiguous observables to look at.
- The case of the radially excited D' meson is illuminating: understanding its physics will help to control systematics on V_{cb} .
- We have proposed to check the claim that $\mathcal{B}(B \to D')$ is large in semileptonic decays by analysing non leptonic decays. In particular, we have computed $f_{D'}/f_D$ that enters the Class III factorised amplitude.
- We have shown that the largeness of $\mathcal{B}(B \to D' l \nu)$ implies a good feasibility to measure $\mathcal{B}(B \to D' \pi)$.
- The possibility to extract the B → D'lν form factor directly on the lattice has not been explored yet. A first step is to study the B^{*'} → B transition in static HQET. [talk by A. Gérardin]

A pretty similar discussion can be made for the $B \rightarrow D_0^*$ decay: it is an on-going project.