Neutral B meson mixing with static heavy and domain-wall light quarks

Tomomi Ishikawa (RBRC)

tomomi@quark.phy.bnl.gov

RBC/UKQCD Collaborations

Collaborators: Yasumichi Aoki, Taku Izubuchi, Christoph Lehner and Amarjit Soni Lattice 2013

JULY 29 - AUGUST 03 2013 MAINZ, GERMANY 2013/7/28-8/03, Mainz, Germany

$B^0 - \bar{B}^0$ mixing and CKM

Constraints to CKM triangle

$$\Delta m_q = (\text{known factors}) \times \left| V_{tq}^* V_{tb} \right|^2 \frac{1}{m_{B_q}} \mathcal{M}_{B_q}$$

$$\implies \text{constraints on } V_{td}, V_{ts}$$

- Hadronic matrix elements

$$\mathcal{M}_{B_q} = \langle \overline{B}_q^0 | [\overline{b}\gamma_\mu P_L q] [\overline{b}\gamma_\mu P_L q] | B_q^0 \rangle = \frac{8}{3} m_{B_q}^2 f_{B_q}^2 B_{B_q}$$

$B^0 - \bar{B}^0$ mixing and CKM

Constraints to CKM triangle

• SU(3) breaking ratio ξ

$$\left|\frac{V_{td}}{V_{ts}}\right| = \xi \sqrt{\frac{\Delta m_d}{\Delta m_s} \frac{m_{B_s}}{m_{B_d}}} \qquad \qquad \xi = \frac{m_{B_d}}{m_{B_s}} \sqrt{\frac{\mathcal{M}_{B_s}}{\mathcal{M}_{B_d}}}$$

- The most attractive quantity in $B^0 \bar{B}^0$ phenomena
- Many of the uncertainties cancel in the ratio.
- In the lattice calculation, the error is reduced due to correlation between denominator and numerator.

Other important quantities

- B meson decay constants f_{B_d}, f_{B_s}
- Bag parameters $B_q = \frac{3}{8} \frac{\mathcal{M}_{B_q}}{m_{B_q}^2 f_{B_q}^2}$

RBC/UKQCD Static B Physics

- ▶ V. Gadiyak and O. Loktik, Lattice calculation of SU(3) flavor breaking ratios in $B^0 = \overline{B}^0$ mixing, Phys. Rev. D 72 (2005) 114504.
- O. Loktik and T. Izubuchi, Perturbative renormalization for static and domain-wall bilinears and four-fermion operators with improved gauge actions, Phys. Rev. D 75 (2007) 034504.
- C. Albertus, Y. Aoki, P. A. Boyle, N. H. Christ, T. T. Dumitrescu, J. M. Flynn, T. I, T. Izubuchi, O. Loktik, C. T. Sachrajda, A. Soni, R. S. Van de Water, J. Wennekers and O. Witzel, *Neutral B-meson mixing from unquenched lattice QCD with domain-wall light quarks and static b-quarks*, Phys. Rev. D 82 (2010) 014505.
- T. I, Y. Aoki, J. M. Flynn, T. Izubuchib, and O. Loktik, One-loop operator matching in the static heavy and domain-wall light quark system with O(a) improvement, JHEP 05 (2011) 040.
- Y. Aoki, T. I, T. Izubuchi, C. Lehner and A. Soni (on-going project).

Static limit

Static approximation (leading order of HQET)

- Easy to implement (Static quark propagator is almost free.)
- Symmetries (HQ spin symmetry + chiral symmetry)

reduced operator mixing

- Continuum limit exists even in the perturbative renormalization.
- But, we always have the error coming from static approx. $O(\Lambda_{\rm QCD}/m_b)\sim 10\%$
- Always sitting as an anchor point for other HQ approach.
- Ratio quantities (ξ , f_{B_s}/f_{B_d}) in the static limit
 - Error coming from static approximation is reduced to:

$$O\left(rac{m_s - m_d}{\Lambda_{
m QCD}} imes rac{\Lambda_{
m QCD}}{m_b}
ight) \sim 2\%$$

Lattice action setup

Standard static action with link smearing

$$S_{\text{stat}} = \sum_{\vec{x},t} \overline{\Psi}_h(\vec{x},t) \left[\Psi_h(\vec{x},t) - U_0^{\dagger}(\vec{x},t-a) \Psi_h(\vec{x},t-a) \right]$$

Reduced 1/a power divergence.

- HYP1 [Hasenfratz and Knechtli, 2001]
- HYP2 [Della Morte et al.(ALPHA), 2004]

Domain-wall light quark action

- 5 dimensional, controllable approximate chiral symmetry
- Unphysical operator mixing does not occur.
- Iwasaki gluon action

Matching procedure

Operator matching

◆ Different renormalization —→ Operator matching is needed.

- Matching between continuum QCD and continuum HQET at $\mu = m_b$
- 2-loop RG running from $\mu = m_b$ to $\mu = a^{-1}$ in continuum HQET
- PT matching between continuum HQET and lattice HQET at μ = a⁻¹
 Static with link smearing + DWF
 O(a) disc error is taken into account.

[T.I, Aoki, Flynn, Izubuchi, Loktik (2011)]

Measurement

Gluon ensemble

- Nf=2+1 dynamical DWF + Iwasaki gluon (RBC-UKQCD)

[Phys. Rev. D 83, 074508 (2011)]

label	β	$L^3 \times T \times L_s$	a^{-1} [GeV]	$a \; [\mathrm{fm}]$	$am_{\rm res}$	m_l/m_h	$m_{\pi} [\text{MeV}]$	$m_{\pi}aL$
24c1	2.13	$24^3 \times 64 \times 16$	1.729(25)	0.114	0.003152(43)	0.005/0.04	327	4.54
24c2						0.01/0.04	418	4.79
32c1	2.25	$32^3 \times 64 \times 16$	2.280(28)	0.0864	0.0006664(76)	0.004/0.03	289	4.05
32c2						0.006/0.03	344	4.83
32c3						0.008/0.03	393	5.52

Measurement parameters

label	am_q	Measured MD traj	# of data	# of src	Δt
24c1	0.005, 0.034, 0.040	900–8980 every 40	203	4	20
24c2	0.010, 0.034, 0.040	1460-8540 every 40	178	2	
32c1	0.004,0.027,0.030	520–6800 every 20	315	1	24
32c2	0.006,0.027,0.030	1000–7220 every 20	312	1	
32c2	0.008,0.027,0.030	520-5540 every 20	252	1	

- Gaussian smearing on fermion field (width ~ 0.45 fm)

Measurement

Operators

- 2PT correlation functions

$$C^{\tilde{L}S}(t) = \sum_{\vec{x}} \langle A_0^L(\vec{x}, t) A_0^S(\vec{x}_0, 0)^{\dagger} \rangle,$$

$$C^{\tilde{S}S}(t) = \sum_{\vec{x}} \langle A_0^S(\vec{x}, t) A_0^S(\vec{x}_0, 0)^{\dagger} \rangle,$$

$$C^{SS}(t) = \langle A_0^S(\vec{x}_0, t) A_0^S(\vec{x}_0, 0)^{\dagger} \rangle.$$

- 3PT correlation functions

$$C_{L}(t_{f}, t, t_{0}) = \sum_{\vec{x}} \langle A_{0}^{S}(\vec{x}_{0}, t_{f})^{\dagger} O_{VV+AA}(\vec{x}, t) A_{0}^{S}(\vec{x}_{0}, t_{0})^{\dagger} \rangle,$$

$$C_{S}(t_{f}, t, t_{0}) = \sum_{\vec{x}} \langle A_{0}^{S}(\vec{x}_{0}, t_{f})^{\dagger} O_{SS+PP}(\vec{x}, t) A_{0}^{S}(\vec{x}_{0}, t_{0})^{\dagger} \rangle.$$

$$A_{0}^{L}(\vec{x}, t) : \text{local}$$

$$A_{0}^{S}(\vec{x}, t) : \text{smeared both on heavy and light}$$

$$A_{0}^{L}(\vec{x}, t), O_{VV+AA}(\vec{x}, t) : O(a) \text{ improved operators}$$

Data extraction

Correlator fitting 32c, HYP1 $E_0 = -\ln C(t+1, 0)/C(t, 0)$ ĒS (m_h, m_l, m_a) SS SS = (0.03, 0.004, 0.004) χ^2 /d.o.f. = 0.4 fit range 15 10 20 • VV+AA $\chi^2/d.o.f. = 0.5$ 5 • SS+PP $\chi^2/d.o.f. = 0.5$ -5 15 20 $C_{2PT}(t) = A(e^{-E_0 t} + e^{-E_0 (T-t)}), \quad C_{3PT}(t_f, t, t_0) = A_{3PT} \longrightarrow \Phi_{B_a}^{\text{lat}}, \quad M_{B_a}^{\text{lat}}$ Matching (continuum QCD and lattice HQET)

 $f_{B_q} = (\text{matching factor}) \times \frac{\Phi_{B_q}^{\text{lat}}}{\sqrt{m_B}}, \quad \mathcal{M}_{B_q} = (\text{matching factor}) \times m_B M_{B_q}^{\text{lat}}$

- HYP1 shows larger scaling violation than HYP2.
- HYP1 and HYP2 look consistent in the continuum.
- In the ratio, scaling violation is quite small.

NLO SU(2) HMChPT

Chiral and continuum extrapolationCombined fits

Linear fits are also used to estimate an uncertainty from chiral fits.

Results

Preliminary results

(Systematic errors are included in the error.)

Reducing statistical and chiral/continuum extrapolation errors important.

Results

Comparison

Decay constants have ~10% deviation from other works. Ratio quantities do not have such a significant deviation.

[Blum, Izubuchi and Shintani (2012)]

→ Plenary session 8/2 9:30AM Chulwoo Jung

Example (32c, lightest quark mass parameter)

ullet Translational invariance as a symmetry $g\in G$

- Many source points $N_g = N_{\rm src} = 64$ $(2 \times 2 \times 2 \times 8)$

divide $32 \times 32 \times 32 \times 64$ lattice by $2 \times 2 \times 2 \times 8$

Sloppy CG as an approximation

- deflation with 130 lowest eigenvectors
- CG iter = 120 to achieve res = 3e-3

CG iter \sim 750 to achieve res = 1e-8

CG iter ~ 4000 to achieve res = 1e-8 (no deflation)

2PT, HYP2

[Cost] EXACT(315 conf) : AMA(25 conf) : AMA(40 conf) ~ 1 : 1 : 1.6

3PT, HYP2

[Cost] EXACT(315 conf) : AMA(25 conf) : AMA(40 conf) ~ 1 : 1 : 1.6

Impact on physical quantities

- Gain (compared with deflated exact CG)
 - Decay constant : x2.6 (HYP1), x3.8 (HYP2)
 - Matrix element : x2.2 (HYP1), x3.1 (HYP2)
- Approximation is only used for light sector, then the gain in our heavy-light system would be smaller than other light-light simulations.

Summary and outlook

- B meson decay constants and neutral B meson mixing matrix elements in the continuum limit are obtained using static approximation.
- Two kinds of link smearing in the static action are used (HYP1 and HYP2). They give consistent results in the continuum limit.
- Decay constants has ~10% deviation from other works, possibly due to 1/mb error.
- Ratio quantities does not have significant deviation from other work, because 1/mb error is largely suppressed.
- Reducing statistical and chiral extrapolation error is important as a next step.
- AMA can largely reduce statistical error.
- Considering calculations at physical pion mass point.
- Considering non-perturbative matching.