SU(2) gauge theory with chirally symmetric fermions

- Introduction
- Strategy/setup
- Nf=2 domain-wall simulation
- Overlap eigenvalues
- Summary/outlook

In collaboration with Yoshio Kikukawa (U.Tokyo), Norikazu Yamada (KEK), Kei-Ichi Nagai (KMI, Nagoya U.)

Lattice 2013, 29 July – 3 August 2013, Mainz

Introduction

- SU(2) gauge theory with fundamental fermions
 - Pseudoreal, chiral symmetry breaking: $SU(2Nf) \rightarrow Sp(2Nf)$
 - Many works on confinement mechanism, finite temperature/density
 - Beyond standard model
 - Technicolor, conformal window
 - Dark matter
 Cf. Lewis, Pica, Sannino (2012)
- Chiral dynamics depending on gauge group and fermion repr.
 - Different symmetry breaking pattern

Fundamental $SU(2): SU(2Nf) \rightarrow Sp(2Nf)$ SU(N) N>2: $SU(Nf)xSU(Nf) \rightarrow SU(Nf)$

Adjoint SU(N): SU(2Nf) \rightarrow SO(2Nf)

(many talks in Lattice 2013)

- Number of flavors
- Finite temperature/density

strategy

• Chiral symmetric fermion is better device

- Overalp: best symmetry, high numerical cost, involved setup (Aoki phase, etc.)
 H.M., Kikukawa, Yamada, Nagai, Lattice 2010, 2009
- Domain-wall: good properties, numerically feasible
 - approaches to overlap with large Ns
 - Residual mass probes chiral symmetry violation

Setup

- Iwasaki gauge action
- Nf=2 dynamical standard domain-wall fermions
- Lattice sizes: 8³x16, 12³x24, 16³x32
- HMC
 - Domain-wall/Pauli-Villars
 - Omelyan integrator + multi-time step (2-level)
- Valence fermion: domain-wall/overlap
 - Hadrons correlators
 - Residual mass
 - Eigenvalue/vectors
- Fundamental setup: making basis for further studies
 - many flavors, finite T/µ, adjoint fermions, ...
 - Comparion with improved domain-wall, dynamicsal overlap

Standard domain-wall fermion action

$$S_{DW} = \sum_{x,s} \bar{\psi}(x,s) D_W(x,y;-M_0) \psi(y,s) -\frac{1}{2} \sum_{x,s} \bar{\psi}(x,s) \left[(1-\gamma_5) \psi(x,s+1) + (1+\gamma_5) \psi(x,s-1) - 2\psi(x,s) \right] + m \left[\bar{\psi}(x,1) P_R \psi(x,L_s) + \bar{\psi}(x,L_s) P_L \psi(x,1) \right] D_W(x,y;M) = M \delta_{x,y} - \frac{1}{2} \sum_{\mu=1}^4 \left\{ (1-\gamma_\mu) U_\mu(x) \delta_{x+\hat{\mu},y} + (1+\gamma_\mu) U_\mu^{\dagger}(x-\hat{\mu}) \delta_{x-\hat{\mu},y} - 4\delta_{x,y} \right\}$$

- M₀: domain-wall height, m: fermion mass
- Ls: extent of 5-th direction
- Boundary conditions: $P_R\psi(s=0) = P_L\psi(s=L_s+1) = 0$
- 4D fermion field:

$$q(x) = P_L \psi(x, s = 1) + P_R \psi(x, s = L_s)$$

$$\bar{q}(x) = \bar{\psi}(x, s = 1)P_R + \bar{\psi}(x, s = L_s)P_L$$

Resources/environment

Machines

- Hitachi SR16000, IBM Blue Gene/Q at KEK
- φ at KMI, Nagoya Univ.

Code:

- Bridge++ (C++)
 - Cf. S.Ueda's talk (Fri pm)
- Fortran code
- JLDG (Japan Lattice Data Grid)
 - for fast data transfer

Parameter and scale

- Lattice sizes: 8³x16, 12³x24, 16³x32
- β=0.85, 0.90, (also 0.80, 1.0)
- Ns=16, M₀=1.6
- Sea fermion mass: m=0.02, 0.05, 0.10, 0.20
- Sommer's scale determined from static potential
 - Physical units only for rough idea

Meson spectrum and residual mass

- Valence quark mass dependence
- Local-local correlators, 20-40 configurations
- m_{PS}^{2} is proportional to m_{val}
- Residual mass: decreases as β increases
 - Consistent with PS meson mass, $m_{res}(\beta=0.90) \sim 0.015$

Finite size effect

- Comparison of 8^3x16 , 12^3x24 , 16^3x32 at the same beta and m
- At β =0.85, finite size effect small on 12³x24 and 16³x32

Lm_{PS}(m=0) ~ 5.4 (L=12), 3.6 (L=8)

- At β =0.90, rather large finite size effect: 12³x24 underway

Lm_{PS}(m=0) ~ 5.8 (L=16), 3.6 (L=12)

Domain-wall analysis summary

- Spectroscopy
 - Spectrum and residual mass are consistent with standard behaviors with broken chiral symmetry
 - Ready to extend to large Nf/finite temperature
- Analysis In progress:
 - Other meson/diquark channels (need larger statistics)
 - PCAC mass, decay constant
 - Engenvalues

Overlap operator

$$D = \frac{1}{Ra} \left[1 + \gamma_5 \operatorname{sign}(H_W(-m_0)) \right]$$

- H_W : hermitian Wilson-Dirac operator
- Zolotarev approx to sign function
- Low-mode subtraction for H_W
- Eigenvalues/vectors
 - zero mode destribution
 - Low-mode distribution/density
 - Comparison with random matrix theory
 - Now most results are on 8³x16
- Hadron spectroscopy is in progress

(Neuberger, 1998)

Overlap eigenvalues

- Eigenvalues of massless overlap fermion operator
 - Implicitly restarted Lanczos algorithm
- Topological charge distribution: number of zero modes
 - Autocorrelation: on 8³x16, topology well frequently changes
 - Need to prepare to long autocorrelation on larger lattices

Overlap eigenvalues

Eigenvalue distribution

- Distribution of the lowest, 2nd, 3rd lowest modes except zero modes
 - -- May be correlated with meson correlator for small masses
- Eigenvalue density: condednsate through Banks-Casher relation

Random matrix theory

- Level spacing statistics
 - \rightarrow Comparison with Random matrix theory
 - Roughly consistent with SO ensemble
 - Detailed analysis is underway

8³x16, beta=0.85, m=0.20 500 configs (every 5 trj.)

Low-lying eigenmodes

- How domainwall fermion approaches overlap?
 - As residual mass decreases
 - Low-lying eigenmodes: expected to become similar
- Correlation bwtween eigenmodes of overlap and 4D domainwall operators

 $D^{(4)}(m) = \{P^{-1}[D_{DW}(1)]^{-1}D_{DW}(m)P\}_{11}$

Kikukawa-Noguchi (99), Borici (99)

- Approximation to overlap operator
- Numerical result: on 8³x16
 - 40 low-lying eigenmodes measured on each config.
 - Results in next page: correlation on each config.
 - As residual mass decreases, correlation increases

Low-lying eigenmodes

• 8³x16, Beta=0.85, m=0.20: m_{res} ~ 0.03

Summary/outlook

Summary

- SU(2) gauge theory is explored with chirally symmetric fermions
- Iwasaki + Nf=2 dynamical domainwall fermions successfully works
- Domainwall/overlap observables: complementary analyses

Outlook

- Large Nf, finite temperature/density
- Improved signals needed \rightarrow low-mode averaging/all-to-all prop.
- Residual mass: better to dcrease \rightarrow optimal domainwall ?
- Other gauge group, fermion repr. : adjoint fermions underway
- Dynamical overlap (fixed topology) in epsilon-regime