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Introduction

Experiment
Transition amplitudes for K → ππ of the two isospin final states are significantly enhanced

|A0|/|A2| ∼ 22.1, "∆I = 1/2-rule"

Direct computation of the decay amplitudes is a formidable challenge
Somewhat easier to determine LECs of the effective chiral weak Hamiltonian via
lattice simulations

Matching does not necessitate physical kinematics nor physical quark masses
However, large volumes and sufficient small quark masses are required

Our goal is to understand the rôle of the charm quark
Compute correlation functions outside the GIM limit
Because of the increased computational costs use GPU-based simulation programs
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QCD in the ε-regime

1/mπ

mπ � 1

1/mπ

mπ ≈ 1

1/mπ

ε-regime

There are several possibilities for the order of the limits of volume and quark masses
Approach the chiral limit first by decreasing the quark masses

The so-called ε-regime of χPT: mπL� 1, FπL� 1

Possible to work out NLO corrections without introducing additional LECs
Lattice simulations in ε-regime are quite demanding
Remark: Observables in the ε-regime depend on the topology of the gauge field

Classify correlation functions by the topological charge ν
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Low-energy constants (LECs)

P. Hernandez, M. Laine, C. Pena, E. Torro, J. Wennekers and H. Wittig, JHEP 0805 (2008) 043

Weak Hamiltonian in the SU(4)-symmetric case (GIM limit)

Hw =
g2w

4M2
W
V ∗usVud

{
k+1 Z

+
11Q

+
1 + k−1 Z

−
11Q

−
1

}
Operators are Q±1 = [O1]rsuv ± [O1]rsvu and transform in the 84 and 20 representation

The generic four-quark operator is [O1]rsuv = (ψ̄rγµψu)(ψ̄sγµψv)

Can be expanded in the non-perturbative regime in terms of the Goldstone boson
fields

HW =
g2W

4M2
W
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−
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}
At leading-order the transition amplitudes in terms of the LECs are
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The overlap operator

Chiral fermions are required to perform a straightforward matching of lattice QCD and
chiral effective theory

DN =
1

ā

(
1 + γ5 sign(Q)

)
Q = γ5(aDW − 1− s), ā =

a

1 + s

sign(Q) has to be evaluated by a polynomial approximation
In the ε-regime, Q2 can develop exceptionally low eigenvalues
Final expression for the sign-function

sign(Q) ' P+ − P− + (1− P+ − P−)XPn,ε(X
2), X = Q/‖Q‖

L. Giusti, C. Hoelbling, M. Lüscher and H. Wittig, Comput. Phys. Commun. 153 (2003) 31
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Correlation functions

Two types of three-point correlators can be utilized for the matching between lattice
QCD and chiral effective theory

We consider a correlation function of two pseudo-scalar densities and a weak operator
Also possible is a correlation function of two left-handed currents and a weak operator

Pseudo-scalar correlators develop poles in 1/(mV )n

L. Giusti, P. Hernandez, M. Laine, P. Weisz and H. Wittig, JHEP 0401 (2004) 003

Some propagators can be substituted by projectors to zero-mode wave function

Sm(x, y) =
∑
vi∈K

vi(x)v†i (y)

mV
+ . . .

Residues are easier to compute numerically since they require fewer quark
propagators
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Correlation functions

“figure-8”-diagram

“eye”-diagram subtraction diagram K → vac-diagrams

Q±2 = (m2
u −m2

c)
{
md(s̄P+d) +ms(s̄P−d)

}
“Figure-8” has been computed on conventional hardware

Gives us a good cross-check on our GPU-based implementation

Slide 6 Lattice 2013 July, 2013



Correlation functions

“Figure-8” diagram is then given by

A±ν (x0 − z0, y0 − z0) = − lim
m→0

(mV )2
∫
x

∫
y

〈∂x0
P (x)O±1 (z)∂y0P (y)〉ν

The pseudo-scalar density is P = iψ̄γ5ψ

Compute derivatives to avoid contaminations from higher order LECs
It is convenient to normalize the three-point functions with bare two-point functions of
the form

Bν(x0 − z0) = lim
m→0

(mV )

∫
x

〈∂x0
P (x)L0(z)〉ν

The left-handed current is L0 = ψ̄γ0P−ψ

Note: This two-point function can be related to the two-point function of two pseudoscalar
densities through the non-singlet axial Ward identity

The ratios are directly related to the LECs

R±ν ≡
A±ν (x0 − z0, y0 − z0)

Bν(x0 − z0)Bν(y0 − z0)
= [g±1 ]bare

(
1∓ 1

|ν|

)
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Zero-mode expansion of the correlators

Expansion of the three-point function A±ν = Āν ± Ãν

Āν ≡ lim
m→0

1

L3

∫
z

〈
|ν|∑
i=1

v†i (z)γµηi(z;x0)

|ν|∑
j=1

v†j (z)γµηj(z; y0)〉ν

Ãν ≡ − lim
m→0

1

L3

∫
z

〈
|ν|∑
i,j=1

v†i (z)γµηj(z; y0)v†j (z)γµηi(z;x0)〉ν

The extended propagator is given by ηi(z;x0) = ∂x0
∫
x
P−χSm(z, x)Pχvi(x)

Expansion of the two-point function

Bν(x0 − z0) = lim
m→0

1

L3

∫
z

〈
|ν|∑
i=1

v†i (z)γ0ηi(z;x0)〉ν
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Simulation parameters

Lattice β V |ν| N
|ν|
cfg x0/a, y0/a am

A1 5.8458 164 1–5 180, 157, 169, 126, 94 5, 11 0.0015, 0.0025, 0.005
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Two-point function Bν(x0 − z0)
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From χPT: TBν(x0 − z0) = |ν|
{

1 + 2|ν|
(FL)2h1(τx)

}
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Ward identity Dν/Bν normalized to ZA = 1.710

0.98
1.00
1.02

0.98
1.00
1.02

0.98
1.00
1.02

0.98
1.00
1.02

0.000 0.001 0.002 0.003 0.004 0.005
am

0.98
1.00
1.02

ZABν(x0 − z0) = Dν(x0 − z0) ≡ 1
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At LO we have R+
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)
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R−ν /(1 + 1/|ν|)
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R+
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We expect R+
ν R
−
ν = [g+1 g

−
1 ]bare

(
1− 1

|ν|2
)
even at NLO
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Results on g±1

|ν| [g+1 ]bare [g−1 ]bare [g+1 g
−
1 ]bare

2 0.81(28) 2.47(1.05) 1.88(1.07)

3 0.90(9) 1.63(44) 1.51(47)

4 0.84(7) 1.45(22) 1.22(22)

5 0.84(5) 1.33(14) 1.13(12)

w.a. 0.85(4) 1.40(11) 1.17(10)

[g+1 ]bare from [g+1 g
−
1 ]bare gives 0.83(5) which is consistent
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Low-mode averaging (LMA)

The chiral propagator can be split into a “low” and a “high” part

P−χSm(z, x)Pχ =

Nlow∑
k=1

Ψk(z)⊗Ψk(x) + P−χS
sub
m (z, x)Pχ

The two-point function separates into two parts as well: Bν = B l
ν +Bh

ν

The high part is formally the same but with the subspace propagator plugged in
The low part now allows for an additional averaging over time translations

B l
ν(t) = lim

m→0

|ν|∑
i=1

Nlow∑
k=1

1

V

∫
x,z

δ(x0 − z0 − t)〈v†i (z)γ0P−Ψk(z)∂x0

[
Ψ†k(x)P+vi(x)

]
〉ν

LMA for the three-point function is performed analogously
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Comparison of conventional computation and LMA
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Relative error δBν(t)/Bν(t)
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Summary and outlook

Summary
Estimation of the weak low-energy constants g±1 in the SU(4) limit
Contributions of topological zero-modes to the three-point function of pseudo-scalar
Good signal on the two-point function and agreement on the non-singlet axial Ward
identity
Final result on the LECs at LO: g+1 = 0.85(4), g−1 = 1.40(11)

An enhancement is already recognizable
Todo

NLO corrections for R±ν
LMA for the three-point function
Computation of the additional diagrams
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Thank you for your attention.


