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Introduction

>

Lattice gauge theories — fundamental contribution towards
understanding of strongly correlated systems.

Most non-perturbative computations done in Euclidean space with
Wilson formulation.

Ultra-cold atoms toolbox — quantum dynamics of gauge theories.
Questions of real-time evolution and finite baryon density.

Alternate formulation of gauge theories (Horn,1981; Orland, Rohrlich, 1990;
Chandrasekharan, Wiese, 1997 ) and QCD with domain wall fermions
(Brower, Chandrasekharan, Wiese, 1999) are particularly relevant.

These realize continuous gauge symmetries using discrete
quantum link variables, having finite dimensional Hilbert space
— extension of Wilson formulation of gauge theories.

Excellent candidate models to be implemented in cold-atom systems.

Allows construction of very efficient algorithms to study static
properties.



Hamiltonian U(1) LGT: Wilson formulation

» U(1) gauge invariant Hamiltonian:
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u=-exp(ip); u' =exp(—ip); e=—idy,;
= are operators in the Hamiltonian formulation, operating in an
infinite dimensional Hilbert space on a single link
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U(1) gauge transformations generated by Gauss Law:
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Commutation relations realizing gauge invariance:

[e,u] = u, [e,ul]=—ul
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Hamiltonian U(1) LGT: Quantum Links

» U(1) gauge invariant Hamiltonian:
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= are operators in the Hamiltonian formulatlon, operating in a
finite dimensional Hilbert space on a single link
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U(1) gauge transformations generated by Gauss Law:
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Commutation relations realizing gauge invariance:

[E,U] = U, [E,U=-Ut
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[U,U'] = 2E



The (2+1)-d U(1) Quantum Link model

» Simplest Abelian pure gauge model: with spin S = 1/2
— 2-dim Hilbert space per link
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» E2 contributes a constant for S = 1/2.
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» Plaquettes are flipped only if they have flux in the right order; second term (= H,)
counts the number of flippable plaquettes
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Gauss Law and Charge Sectors

To define the path integral Z = Tr (exp(—5H)Pg),
the Gauss Law must be implemented :

Z (Exv" o Ex—7,i) =
i

There is zero charge everywhere (charge-0 sector) unless
external static charges are placed at vertices.
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Symmetry breaking and phase transitions

» Discrete: Rotation by 7/2, Reflection, Charge Conjugation (C),
Translation(T = (T, T)))

» Continuous: U(1) center symmetries in x- and y-directions

» Symmetry breaking patterns can be deduced very well from exact
diagonalizations (next talk by Philippe Widmer).

» 2-component order parameter (M4, Mg) to analyze the symmetry
breaking patterns

| B
‘ ' MB : /@ ~ @ - A ' MB

MA




Phase diagram
Explored with exact diagonalization and a newly developed cluster
algorithm using dualization techniques.
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An approximate global SO(2) symmetry is emergent at Ac. A
description in terms of a low-energy effective theory suggests a weak
1st order transition. Next talk by P. Widmer provides more details



Crystalline confinement
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Energy density (H,) of two charges Q = =+ 2 placed along the axis on L = 72 lattice



Deconfined Crystal?

Universality arguments predict the finite temperature transition to be
of BKT type. Systematic investigation underway; hints of a
high-temperature phase with broken T symmetry, which gets
smoothly restored with increasing temperature.
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Order parameter contour plots (M4, Mp) for L=24; A = 0;
(left) BJ=1.4 and (right) 3J=0.8
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Conclusion

» The (2+1)-d QLM has interesting non-trivial physics, including exotic
phases not seen before in gauge theories; and emergence of an
approximate global symmetry

» More details about this will be discussed in the next talk.

» The first efficient cluster algorithm for a quantum link model allows us
to investigate the phase structure in great detail!

» These models are also related to quantum dimer models, which are
extensively studied in condensed matter physics with reference to
high- T, phenomena — applicability of new algorithms.

» Broader applicability of the dualization techniques! Playground for
ideas for extending the construction to other theories.

» The possibility of “observing” this physics in engineered cold-atom
systems makes the study worthwhile.



Backup 1: Level crossing
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Non-trivial quantum phase transition:

Uninteresting scenario:




Backup 2: Dualization and cluster algorithm

» Using duality, the Z can be rewritten as a height model with a
6-height variable interaction. The height variables are dual to the

plaquette variables of the U(1) gauge theory
» A highly efficient cluster algorithm can be constructed for the resulting
height model
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» Dualization naturally suggests a 2-component order parameter to

analyze the phase transition: (M,, Mg) measured on the even
(unshaded) and odd (shaded) sublattice.
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