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Introduction

I Lattice gauge theories→ fundamental contribution towards
understanding of strongly correlated systems.

I Most non-perturbative computations done in Euclidean space with
Wilson formulation.

I Ultra-cold atoms toolbox→ quantum dynamics of gauge theories.

I Questions of real-time evolution and finite baryon density.

I Alternate formulation of gauge theories (Horn,1981; Orland, Rohrlich, 1990;
Chandrasekharan, Wiese, 1997 ) and QCD with domain wall fermions
(Brower, Chandrasekharan, Wiese, 1999) are particularly relevant.

I These realize continuous gauge symmetries using discrete
quantum link variables, having finite dimensional Hilbert space
→ extension of Wilson formulation of gauge theories.

I Excellent candidate models to be implemented in cold-atom systems.

I Allows construction of very efficient algorithms to study static
properties.



Hamiltonian U(1) LGT: Wilson formulation
I U(1) gauge invariant Hamiltonian:

H =
g2

2

∑
x,i

e2
x,i −

1
2g2

∑
�

(u� + u†�)

I u = exp(iϕ); u† = exp(−iϕ); e = −i∂ϕ;
⇒ are operators in the Hamiltonian formulation, operating in an
infinite dimensional Hilbert space on a single link

I U(1) gauge transformations generated by Gauss Law:

Gx =
∑

i

(ex,i − ex−î,i); [Gx ,H] = 0

V =
∏

x

exp(iαxGx); u′xy = Vuxy V † = exp(iαx)uxy exp(−iαy )

I Commutation relations realizing gauge invariance:

[e,u] = u, [e,u†] = −u†

I [u,u†] = 0



Hamiltonian U(1) LGT: Quantum Links
I U(1) gauge invariant Hamiltonian:

H =
g2

2

∑
x,i

E2
x,i −

1
2g2

∑
�

(U� + U†�)

I U = S1 + iS2 = S+; U† = S1 − iS2 = S−;E = S3

⇒ are operators in the Hamiltonian formulation, operating in a
finite dimensional Hilbert space on a single link

I U(1) gauge transformations generated by Gauss Law:

Gx =
∑

i

(Ex,i − Ex−î,i); [Gx ,H] = 0

V =
∏

x

exp(iαxGx); U ′xy = VUxy V † = exp(iαx)Uxy exp(−iαy )

I Commutation relations realizing gauge invariance:

[E ,U] = U, [E ,U†] = −U†

I [U,U†] = 2E



The (2+1)-d U(1) Quantum Link model
I Simplest Abelian pure gauge model: with spin S = 1/2
→ 2-dim Hilbert space per link

E | ↑〉 =
1
2
| ↑〉; E | ↓〉 = −

1
2
| ↓〉; U| ↑〉 = 0; U| ↓〉 = | ↑〉; U†| ↑〉 = | ↓〉; U†| ↓〉 = 0

I E2 contributes a constant for S = 1/2.

H = −J
∑
�

(
U� + U†

�

)
+λ
∑
�

(
U� + U†

�

)2

HJ

HJ

λHλ

Hλ

-J

I Plaquettes are flipped only if they have flux in the right order; second term (= Hλ)

counts the number of flippable plaquettes

H 16Hλ



Gauss Law and Charge Sectors

To define the path integral Z = Tr (exp(−βH)PG),
the Gauss Law must be implemented :∑

i

(
Ex ,i − Ex−î,i

)
= Qx

There is zero charge everywhere (charge-0 sector) unless
external static charges are placed at vertices.

Q=0

Q=1

Q=2



Symmetry breaking and phase transitions

I Discrete: Rotation by π/2, Reflection, Charge Conjugation (C),
Translation(T = (Tx ,Ty ))

I Continuous: U(1) center symmetries in x- and y-directions

I Symmetry breaking patterns can be deduced very well from exact
diagonalizations (next talk by Philippe Widmer).

I 2-component order parameter (MA,MB) to analyze the symmetry
breaking patterns
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Phase diagram
Explored with exact diagonalization and a newly developed cluster
algorithm using dualization techniques.
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An approximate global SO(2) symmetry is emergent at λc . A
description in terms of a low-energy effective theory suggests a weak
1st order transition. Next talk by P. Widmer provides more details



Crystalline confinement
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Deconfined Crystal?
Universality arguments predict the finite temperature transition to be
of BKT type. Systematic investigation underway; hints of a
high-temperature phase with broken T symmetry, which gets
smoothly restored with increasing temperature.
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Conclusion

I The (2+1)-d QLM has interesting non-trivial physics, including exotic
phases not seen before in gauge theories; and emergence of an
approximate global symmetry

I More details about this will be discussed in the next talk.

I The first efficient cluster algorithm for a quantum link model allows us
to investigate the phase structure in great detail!

I These models are also related to quantum dimer models, which are
extensively studied in condensed matter physics with reference to
high-Tc phenomena→ applicability of new algorithms.

I Broader applicability of the dualization techniques! Playground for
ideas for extending the construction to other theories.

I The possibility of “observing” this physics in engineered cold-atom
systems makes the study worthwhile.



Backup 1: Level crossing

λc

0 1

λ

C,T T

Non-trivial quantum phase transition:

Uninteresting scenario:

(px, py) = (π, π);C = +

(px, py) = (π, π);C = −
(px, py) = (0, 0);C = +



Backup 2: Dualization and cluster algorithm

I Using duality, the Z can be rewritten as a height model with a
6-height variable interaction. The height variables are dual to the
plaquette variables of the U(1) gauge theory

I A highly efficient cluster algorithm can be constructed for the resulting
height model
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I Dualization naturally suggests a 2-component order parameter to
analyze the phase transition: (MA,MB) measured on the even
(unshaded) and odd (shaded) sublattice.
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