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Introduction

e Conventional Wilson formulation of lattice gauge theory
uses continuous gauge fields

e This formulation cannot be used to directly answer
questions about real-time dynamics or the physics at finite
baryon density

e Quantum Link Models (QLM) are an alternative formulation
of gauge theories which uses discrete degrees of freedom
to realize continuous gauge transformations [Horn, 1981],
[Orland, Rohrlich, 1990], [Chandrasekharan, Wiese 1997]

e This allows, in principle, to realize these models on optical
lattices or in ion-traps with atoms/molecules/ions

e QLMs also offer a possibility for improved algorithms

¢ Already the simplest case of an Abelian gauge symmetry
offers interesting physics
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The (2+1)d U(1) Quantum Link Model (QLM)

H=-J% [UD + b -2 (vo+ Ug)z]
O

where Up := Ux,iUx+}JUI+}iU;J

Instead of u,; = exp(ipy,) € U(1) we use quantum links

e The links become spin raising operators, U, ; = Sxfl.

* Spin-1 represenation, i.e. 2d Hilbert space per link

e Up and UITj flip plaquettes with a closed flux loop
AN Z Z
/7 N\ N\
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e The A-term counts the number of flippable plaquettes
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Gauge invariance and the Gauss law
e [H,G =0,where G, =), (Exi — Ex_;l.) are the
generators of infinitesimal gauge transformations

e The Gauss law restricts the system to gauge invariant
states, G.|¢) =0

e This leads to the following set of allowed configurations at

RN
e A A

e 6 instead of 2* = 16 states per site
= Exact diagonalization
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Exact diagonalization results - Energy gaps

3.5 T

E_and E’ have C = —andp = (m, )
E. and E/, have C = + and p = (m, )
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Exponential energy gaps

e Spontaneous symmetry breaking: E; — Ey = Aexp (—oL.Ly)
e Energy gaps at A = —1 (left) and A = 0 (right):

2 I I I 1 I I I
" " | |
—~ 0 .
o
w o L _
I L
a4 . i
6 - E, = .
S Et N .
8 L =
| | | | | -4 | | | | |
15 20 25 30 35 15 20 25 30 35
Volume Volume

= C, T (left) and T (right) spontaneously broken
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Probability distributions p(Ms, Mp) at T =0
Define order parameters M, and Mj associated with the even
and odd dual sublattices A and B to distinguish different
symmetry breaking patterns
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Probability distributions p(Ms, Mp) at T =0
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Effective theory (ET)

Near )., exact diagonalization shows (approximate)

finite-volume rotor spectrum E,, sz I, even

Emergent SO(2) symmetry that is spontaneously broken

Formulate effective theory in terms of unit-vector field
é(x) = (cos p(x), sin p(x)) representing direction of (M, Mp)

(M4, Mp) indistinguishable from (—M4, —Mp)
= RP(1) symmetry instead of SO(2)

Therefore only states invariant against sign changes of €(x)
belong to the physical Hilbert space
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Effective theory

o Effective Euclidean action (using 93 = 0.):

1
Sle] :/d3xc [gﬁmp(%cp—i—d cos?(2¢p)+¢ COS4(2<,0)}

e § + ¢ measures deviation from the phase transition
J breaks emergent symmetry from SO(2) to Z(4)
This leads to small Goldstone boson mass Mc = 2/2|0|/p

The e-term is needed in order to avoid a vanishing string
tension at A. (which we see neither in exact
diagonalizations nor in simulations)
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Phase diagram in the J-e-plane

e From mean field theory applied to the effective theory:
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e Solid line is 1st order, dotted lines are 2nd order
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Global fit of exact diagonalization data

o We perturbatively analyzed the effective theory spectrum

e A global fit of exact diagonalization data with these
predictions for the energy eigenvalues yields
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e These values together with phase diagram from ET imply a
weak first order phase transition
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Conclusions

Exact diagonalization on relatively small lattices already
provides very useful information about the phase structure
in the ultimate large volume regime

We observed an emergent SO(2) symmetry with an
associated pseudo-Goldstone boson

More work with the cluster algorithm is under way to get
more precise calculations of the ET parameters
Quantum Link Models together with quantum simulations
might be a (long-term) solution to currently unsolvable
problems in Lattice QCD

We are working together with the group of P. Zoller in
Innsbruck on schemes for quantum simulating this model
(to be published shortly).
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Definition of M, and Mjp
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My = Z(_l)(fl—fz)/Z h?
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My, My from exact diagonalization

Exact diagonalization of (2+1)-d U(1)



Confinement
Energy of a string wrapping around the lattice (A = 0):

Eo1-Eo
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Sketch of the conjectured phase diagram

T Ve
Ma

Confined
\Ms Ve

e M

o My §

1S A
-1 e 0 1

D. Banerjee, F.-J. Jiang, P. Widmer, U.-J. Wiese Exact diagonalization of (2+1)-d U(1) Quantum Link Model



	The U(1) Quantum Link Model
	Introduction
	Definition of the model
	Exact diagonalization results

	Effective theory
	Derivation
	Results

	Conclusions

