Emergence of a pseudo-Goldstone Boson in a (2+1)-d U(1) pure gauge theory

Philippe Widmer

Albert Einstein Center for Fundamental Physics Institute for Theoretical Physics University of Bern

Lattice 2013, Mainz

D. Banerjee, F.-J. Jiang, P. Widmer, U.-J. Wiese [arXiv:1303.6858]

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Introduction

- Conventional Wilson formulation of lattice gauge theory uses continuous gauge fields
- This formulation cannot be used to directly answer questions about real-time dynamics or the physics at finite baryon density
- Quantum Link Models (QLM) are an alternative formulation of gauge theories which uses discrete degrees of freedom to realize continuous gauge transformations [Horn, 1981], [Orland, Rohrlich, 1990], [Chandrasekharan, Wiese 1997]
- This allows, in principle, to realize these models on optical lattices or in ion-traps with atoms/molecules/ions
- QLMs also offer a possibility for improved algorithms
- Already the simplest case of an Abelian gauge symmetry offers interesting physics

Introduction Definition of the model Exact diagonalization results

The (2+1)d U(1) Quantum Link Model (QLM)

$$H = -J \sum_{\Box} \left[U_{\Box} + U_{\Box}^{\dagger} - \lambda \left(U_{\Box} + U_{\Box}^{\dagger} \right)^2 \right]$$

- where $U_{\Box}:=U_{x,i}U_{x+\hat{i},j}U_{x+\hat{j},i}^{\dagger}U_{x,j}^{\dagger}$
- Instead of $u_{x,i} = \exp(i\varphi_{x,i}) \in U(1)$ we use quantum links
- The links become spin raising operators, $U_{x,i} = S_{x,i}^+$
- Spin-¹/₂ representation, i.e. 2d Hilbert space per link
- U_{\Box} and U_{\Box}^{\dagger} flip plaquettes with a closed flux loop

$$U_{\Box} \swarrow = \checkmark \qquad \qquad U_{\Box} \checkmark = 0$$

The λ-term counts the number of flippable plaquettes_

The U(1) Quantum Link Model Introduction Effective theory Definition of the model Conclusions Exact diagonalization results

Gauge invariance and the Gauss law

- $[H, G_x] = 0$, where $G_x = \sum_i \left(E_{x,i} E_{x-\hat{i},i} \right)$ are the generators of infinitesimal gauge transformations
- The Gauss law restricts the system to gauge invariant states, $G_x |\psi\rangle = 0$
- This leads to the following set of allowed configurations at a site *x*

- 6 instead of $2^4 = 16$ states per site
 - \Rightarrow Exact diagonalization

ヘロア 人間 アメヨア 人口 ア

The U(1) Quantum Link Model Introduction Effective theory Conclusions Exact diagonalization results

Exact diagonalization results - Energy gaps

The U(1) Quantum Link Model Introduction Effective theory Definition of the model Conclusions Exact diagonalization results

Exponential energy gaps

- Spontaneous symmetry breaking: $E_1 E_0 = A \exp(-\sigma L_x L_y)$
- Energy gaps at $\lambda = -1$ (left) and $\lambda = 0$ (right):

 \Rightarrow C, T (left) and T (right) spontaneously broken

The U(1) Quantum Link Model Introduction Effective theory Definition of the model Conclusions Exact diagonalization results

Probability distributions $p(M_A, M_B)$ at T = 0

Define order parameters M_A and M_B associated with the even and odd dual sublattices A and B to distinguish different symmetry breaking patterns

 $^{T}M_{A} = -M_{B}$; $^{T}M_{B} = M_{A}$; $^{C}M_{A} = M_{A}$; $^{C}M_{B} = -M_{B}$

D. Banerjee, F.-J. Jiang, P. Widmer, U.-J. Wiese

Exact diagonalization of (2+1)-d U(1) Quantum Link Model

Introduction Definition of the model Exact diagonalization results

Probability distributions $p(M_A, M_B)$ at T = 0

イロト イポト イヨト イヨト

э

Effective theory (ET)

- Near λ_c , exact diagonalization shows (approximate) finite-volume rotor spectrum $E_m = \frac{m^2 c^2}{2\rho L_1 L_2}$, *m* even
- Emergent SO(2) symmetry that is spontaneously broken
- Formulate effective theory in terms of unit-vector field $\vec{e}(x) = (\cos \varphi(x), \sin \varphi(x))$ representing direction of (M_A, M_B)
- (M_A, M_B) indistinguishable from $(-M_A, -M_B)$ $\Rightarrow \mathbb{R}P(1)$ symmetry instead of SO(2)
- Therefore only states invariant against sign changes of *e*(*x*) belong to the physical Hilbert space

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Effective theory

• Effective Euclidean action (using $\partial_3 = \partial_{ct}$):

$$S[\varphi] = \int d^3x \frac{1}{c} \left[\frac{\rho}{2} \partial_\mu \varphi \partial_\mu \varphi + \delta \cos^2(2\varphi) + \varepsilon \cos^4(2\varphi) \right]$$

- $\delta + \epsilon$ measures deviation from the phase transition
- δ breaks emergent symmetry from SO(2) to $\mathbb{Z}(4)$
- This leads to small Goldstone boson mass $Mc = 2\sqrt{2|\delta|/\rho}$
- The ε-term is needed in order to avoid a vanishing string tension at λ_c (which we see neither in exact diagonalizations nor in simulations)

ヘロト ヘアト ヘビト ヘビト

Phase diagram in the δ - ϵ -plane

From mean field theory applied to the effective theory:

Solid line is 1st order, dotted lines are 2nd order

ъ

Global fit of exact diagonalization data

- · We perturbatively analyzed the effective theory spectrum
- A global fit of exact diagonalization data with these predictions for the energy eigenvalues yields

$$\lambda_{c} = -0.359(5)$$

$$\delta_{c} = -\epsilon_{c} = 0.01(1) J/a^{2}$$

$$\rho = 0.45(3) J$$

$$c = 1.5(1) Ja$$

$$-0.1$$

$$-0.2$$

$$-0.3$$

$$-0.4$$

$$-0.5$$

$$-0.6$$

$$-0.7$$

$$-0.8$$

$$-0.9$$

$$-0.2 -0.4$$

$$-0.5$$

$$-0.6$$

$$-0.7$$

$$-0.8$$

$$-0.9$$

$$-0.2 -0.4$$

$$-0.5$$

$$-0.6$$

$$-0.7$$

$$-0.8$$

$$-0.9$$

$$-0.2 -0.04$$

$$-0.6$$

$$-0.7$$

$$-0.8$$

$$-0.9$$

$$-0.2 -0.04$$

$$-0.6$$

$$-0.7$$

$$-0.8$$

$$-0.9$$

$$-0.2 -0.04$$

$$-0.6$$

$$-0.7$$

$$-0.8$$

$$-0.9$$

$$-0.2 -0.04$$

$$-0.6$$

$$-0.1$$

These values together with phase diagram from ET imply a weak first order phase transition

Conclusions

- Exact diagonalization on relatively small lattices already provides very useful information about the phase structure in the ultimate large volume regime
- We observed an emergent SO(2) symmetry with an associated pseudo-Goldstone boson
- More work with the cluster algorithm is under way to get more precise calculations of the ET parameters
- Quantum Link Models together with quantum simulations might be a (long-term) solution to currently unsolvable problems in Lattice QCD
- We are working together with the group of P. Zoller in Innsbruck on schemes for quantum simulating this model (to be published shortly).

イロト イポト イヨト イヨト

Definition of M_A and M_B

$$h_{\widetilde{x}}^{A} = 0, 1$$
 ; $h_{\widetilde{x}}^{B} = \pm \frac{1}{2}$; $\widetilde{x} = (x_{1} + \frac{1}{2}, x_{2} + \frac{1}{2})$

$$E_{x,x+\hat{i}} = [h_{\tilde{x}}^X - h_{\tilde{x}+\hat{i}-\hat{1}-\hat{2}}^{X'}] \text{ mod } 2 = \pm rac{1}{2}, \quad X, X' \in \{A, B\}$$

$$M_A = \sum_{\widetilde{x} \in A} (-1)^{(\widetilde{x}_1 - \widetilde{x}_2)/2} h_{\widetilde{x}}^A$$

$$M_B = \sum_{\widetilde{x} \in B} (-1)^{(\widetilde{x}_1 - \widetilde{x}_2 + 1)/2} h_{\widetilde{x}}^B$$

D. Banerjee, F.-J. Jiang, P. Widmer, U.-J. Wiese Exact diagonalization of (2+1)-d U(1) Quantum Link Model

イロン イロン イヨン イヨン

M_A , M_B from exact diagonalization

D. Banerjee, F.-J. Jiang, P. Widmer, U.-J. Wiese Exact diagonalization of (2+1)-d U(1) Quantum Link Model

Confinement

Energy of a string wrapping around the lattice ($\lambda = 0$):

D. Banerjee, F.-J. Jiang, P. Widmer, U.-J. Wiese Exact diagonalization of (2+1)-d U(1) Quantum Link Model

ъ

Sketch of the conjectured phase diagram

D. Banerjee, F.-J. Jiang, P. Widmer, U.-J. Wiese Exact diagonalization of (2+1)-d U(1) Quantum Link Model