First results for SU(2) Yang-Mills with one adjoint Dirac Fermion

Andreas Athenodorou*

Swansea University

The XXXI International Symposium on Lattice Field Theory July 29 - August 03 2013 Mainz, Germany

* With Ed Bennett, Georg Bergner, Biagio Lucini and Agostino Patella

Overview

- 1. Generalities.
- 2. Dirac Decomposition.
 - Dirac Decomposition: Why?.
 - Dirac Decomposition: Algebra.
 - Dirac Decomposition: Dirac \rightarrow Majorana.
- 3. Lattice Formulation.
- 4. Correlation Functions.
- 5. Observables.
- 6. **Results.**
 - Lattice Parameters.
 - Spectroscopy.
 - Mass Anomalous Dimension.
- 7. Discussion and Conclusions.

Generalities

- We investigate SU(2) with 1 Dirac flavour in the adjoint representation.
- This can be reexpressed as SU(2) with 2 Majorana flavours in the adjoint representation.
- Why is this interesting?
 - Could this provide a route to lattice Supersymmetry?
 - Probe the end of the Conformal Window?
 - * SU(2) with 2 Dirac / 4 Majoranas is conformal (MWT).
 - * SU(2) with 1.5 Dirac / 3 Majoranas is predicted to be borderline.
 - * SU(2) with 1 Dirac / 2 Majoranas is predicted to be confining.
 - Technicolor (TC).
 - * This cannot be an explanation of EWSB.
 - * Too few goldstone bosons.
 - * However it might have large anomalous dimension.

Dirac Decomposition: Why?

- We would like to investigate the spectrum in two separate ways:
 - Dealing with Majorana flavours.
 - Dealing with Dirac flavours.
- Hence, reexpress relevant quantities in terms of Majorana fields:
 - Spinors $\psi \longrightarrow (\psi_{M+},\psi_{M-})$
 - Action $S_f^{\text{Dirac}} \longrightarrow S_f^{\text{Majorana}}$
 - Bilinears eg $\overline{\psi}\Gamma'(\Gamma)\psi \longleftrightarrow f(\overline{\psi}_{M+}\Gamma\psi_{M+},\overline{\psi}_{M+}\Gamma\psi_{M-},\overline{\psi}_{M-}\Gamma\psi_{M+},\overline{\psi}_{M-}\Gamma\psi_{M-})$

Dirac Decomposition: Algebra

• We work in the chiral representation of the Dirac algebra:

$$\gamma^{\mu}=\left(egin{array}{cc} 0 & \overline{\sigma}_{\mu} \ \sigma_{\mu} & 0 \end{array}
ight)$$

with

$$\sigma^{\mu} = (1_2, \vec{\sigma}), \quad \overline{\sigma}^{\mu} = (1_2, -\vec{\sigma}) \;.$$

• And γ_5 :

$$\gamma_5 = i\gamma_0\gamma_1\gamma_2\gamma_3 = \left(\begin{array}{cc} 1_2 & 0\\ 0 & -1_2 \end{array}\right) \ .$$

• Charge Conjugation:

$$C = \gamma_0 \gamma_2 \gamma_5 = \begin{pmatrix} \sigma_2 & 0 \\ 0 & \sigma_2 \end{pmatrix}, \qquad \tilde{C} = iC\gamma_5 = \begin{pmatrix} i\sigma_2 & 0 \\ 0 & -i\sigma_2 \end{pmatrix}$$

•

Dirac Decomposition: Dirac \rightarrow Majorana

- Decomposition of a Dirac Spinor ψ into two Majorana spinors.
 See also I. Montvay, Nucl.Phys. B466 (1996) 259-284, [hep-lat/9510042].
- A Dirac spinor is written as: $\psi = \psi_{M+} + i\psi_{M-}$.
- Hence:

$$\psi_{\rm M+} = \frac{\psi + \tilde{C}\overline{\psi}^{\rm T}}{2} \quad \text{and} \quad \psi_{\rm M-} = \frac{\psi - \tilde{C}\overline{\psi}^{\rm T}}{2i}$$
(1)

- Majorana Condition: $\psi_{M} = \tilde{C} \overline{\psi}_{M}^{T}$ is satisfied.
- with:

$$\overline{\psi}_{M+} = \frac{\overline{\psi} + \psi^{T} \tilde{C}}{2} \quad \text{and} \quad \overline{\psi}_{M-} = \frac{\psi^{T} \tilde{C} - \overline{\psi}}{2i}$$
 (2)

• Using (1) and (2) one can reexpress the action and the fermionic bilinears in terms of Majorana spinors.

Dirac Decomposition: Reexression of the action

- The fermionic action $S_f^{\text{Dirac}} = \overline{\psi} \partial \psi + m \overline{\psi} \psi$ should be reexpressed in terms of Majorana Spinors.
- The mass term takes the form:

$$\overline{\psi}\psi = \overline{\psi}_{\mathrm{M}+}\psi_{\mathrm{M}+} + \overline{\psi}_{\mathrm{M}-}\psi_{\mathrm{M}-}$$

• The kinnetic term takes the form:

$$\overline{\psi}\partial\!\!\!/\psi=\overline{\psi}_{\mathrm{M}+}\partial\!\!\!/\psi_{\mathrm{M}+}+\overline{\psi}_{\mathrm{M}-}\partial\!\!\!/\psi_{\mathrm{M}-}$$

• The fermionic action can take the form:

$$S_{f}^{\text{Majorana}} = \overline{\psi}_{M+} \partial \!\!\!/ \psi_{M+} + \overline{\psi}_{M-} \partial \!\!\!/ \psi_{M-} + m \left(\overline{\psi}_{M+} \psi_{M+} + \overline{\psi}_{M-} \psi_{M-} \right)$$

- The massless fermionic action has an SU(2) global chiral symmetry.
- In the presence of a nonzero condensate it breaks to SO(2)=U(1) (Baryon Number *B* in Dirac basis).

 $\longrightarrow \overline{\psi}\gamma_5\psi$ has B = -1 + 1 = 0

Lattice Formulation: Lattice discretization

• Lattice Action:

$$S = S_G + S_f$$

• Gauge Action:

$$S_G = \beta \sum_p \operatorname{Tr}\left[1 - U(p)\right]$$

• Fermionic Action:

$$S_f^{\text{Dirac}} = \sum_{x,y} \overline{\psi}(x) D(x,y) \psi(y)$$

with massive Dirac operator:

$$D(x,y) = \delta_{x,y} - \frac{\kappa}{2} \left[\left(1 - \gamma_{\mu} \right) U_{\mu}(x) \delta_{y,x+\mu} + \left(1 + \gamma_{\mu} \right) U_{\mu}^{\dagger}(x-\mu) \delta_{y,x-\mu} \right]$$

and:

$$\beta = \frac{2(N=2)}{g^2} \qquad \qquad \kappa = \frac{1}{8+2am}$$

Lattice Formulation: Correlation Functions

• We calculate correlation functions:

$$\langle \mathscr{O} \rangle = \frac{\int D\overline{\psi}D\psi dU \mathscr{O}\mathrm{e}^{-S}}{\int D\overline{\psi}D\psi dU \mathrm{e}^{-S}}$$

with \mathcal{O} the operator (correlator).

- We use Monte-Carlo techniques to evaluate this integral.
- We produce Gauge Configurations using:
 RHMC (HiRep).
- Masses can be calculated using as operators $\mathcal{O} = O^{\dagger}(\vec{x}, t)O(\vec{0}, 0)$.
- Correlation functions asymptotically behave as:

$$\lim_{t\to\infty} \left\langle \mathbf{O}^{\dagger}(\vec{x},t)\mathbf{O}(\vec{0},0) \right\rangle = A \mathrm{e}^{-amn_t}$$

• Operators O encode the right quantum numbers.

Lattice Formulation: Fermionic Bilinears

- Express Majorana Bilinears in terms of Dirac Bilinears.
- Using $\overline{\psi}_{Mi}\Gamma\psi_{Mj} = O_{ij}(\Gamma)$ with $i, j \in \{+, -\}$ we obtain:

$$O_{\pm\mp}(\Gamma) = \begin{cases} \frac{1}{4i} \left(\psi^{\mathrm{T}} \tilde{C} \Gamma \psi - \overline{\psi} \Gamma \tilde{C} \overline{\psi}^{\mathrm{T}} \right) & \Gamma = 1, \gamma_{5} \gamma_{\mu}, \gamma_{5} \\ \pm \frac{1}{2i} \overline{\psi} \Gamma \psi & \Gamma = \gamma_{\mu}, \gamma_{0} \gamma_{5} \gamma \end{cases}$$

$$O_{\pm\pm}(\Gamma) = \begin{cases} \frac{1}{4} \left(2 \overline{\psi} \Gamma \psi \pm \psi^{\mathrm{T}} \tilde{C} \Gamma \psi \pm \overline{\psi} \Gamma \tilde{C} \overline{\psi}^{\mathrm{T}} \right) & \Gamma = 1, \gamma_{5} \gamma_{\mu}, \gamma_{5} \\ 0 & \Gamma = \gamma_{\mu}, \gamma_{0} \gamma, \gamma_{0} \gamma_{5} \gamma , \end{cases}$$

$$(3)$$

- We extract masses from Dirac and Majorana bilinears...
- Dirac correlator an example:

$$\left\langle \left(\boldsymbol{\psi}^{\mathrm{T}} \tilde{C} \boldsymbol{\Gamma} \boldsymbol{\psi} - \overline{\boldsymbol{\psi}} \boldsymbol{\Gamma} \tilde{C} \overline{\boldsymbol{\psi}}^{\mathrm{T}} \right)^{\dagger} (x) \left(\boldsymbol{\psi}^{\mathrm{T}} \tilde{C} \boldsymbol{\Gamma} \boldsymbol{\psi} - \overline{\boldsymbol{\psi}} \boldsymbol{\Gamma} \tilde{C} \overline{\boldsymbol{\psi}}^{\mathrm{T}} \right) (0) \right\rangle$$

$$= -\mathrm{tr} \overline{\boldsymbol{\Gamma}} \tilde{C} D^{-1}{}^{\mathrm{T}} (0; x) \tilde{C} \boldsymbol{\Gamma} D^{-1} (0; x) + \mathrm{tr} \overline{\boldsymbol{\Gamma}} \tilde{C}^{\mathrm{T}} D^{-1}{}^{\mathrm{T}} (0; x) \tilde{C} \boldsymbol{\Gamma} D^{-1} (0; x)$$

$$-\mathrm{tr} \tilde{C} \overline{\boldsymbol{\Gamma}} D^{-1} (x; 0) \boldsymbol{\Gamma} \tilde{C} D^{-1}{}^{\mathrm{T}} (x; 0) + \mathrm{tr} (\tilde{C} \overline{\boldsymbol{\Gamma}})^{\mathrm{T}} D^{-1} (x; 0) \boldsymbol{\Gamma} \tilde{C} D^{-1}{}^{\mathrm{T}} (x; 0)$$

$$= -\frac{1}{4} \mathrm{tr} \overline{\boldsymbol{\Gamma}} D^{-1} (x; 0) \boldsymbol{\Gamma} D^{-1} (0; x)$$

Lattice Formulation: Fermionic Bilinears

Dirac bilinears	Majorana bilinears	$U(1)^P$	correlators	
$\bar{\psi}\gamma_0\gamma_5\psi$	$O_{++}(\gamma_0\gamma_5) + O_{}(\gamma_0\gamma_5)$	0-	singlet γ_5 , $\gamma_0 \gamma_5$	
$\bar{\psi}\gamma_5\psi$	$O_{++}(\gamma_5) + O_{}(\gamma_5)$	U		
$\psi^T C \gamma_5 \psi$	$-i(O_{++}(1) - O_{}(1) + 2iO_{+-}(1))$	2^{-}	- triplet 1	
$\psi^\dagger C \gamma_5 \psi^*$	$-i(O_{++}(1) - O_{}(1) - 2iO_{+-}(1))$	-2^{-}		
$ar{\psi}\psi$	$O_{++}(1) + O_{}(1)$	0^+	singlet 1, γ_0	
$\bar{\psi}\gamma_{0}\psi$	$O_{+-}(\gamma_0)$	U		
$\psi^T C \psi$	$-i(O_{++}(\gamma_5) - O_{}(\gamma_5) + 2iO_{+-}(\gamma_5))$	2^+		
$\psi^T C \gamma_0 \psi$	$-i(O_{++}(\gamma_{5}\gamma_{0}) - O_{}(\gamma_{5}\gamma_{0}) + 2iO_{+-}(\gamma_{5}\gamma_{0}))$	2	triplot ac ac ac	
$\psi^\dagger C \psi^*$	$-i(O_{++}(\gamma_5) - O_{}(\gamma_5) - 2iO_{+-}(\gamma_5))$	2^+		
$\psi^{\dagger} C \gamma_0 \psi^*$	$-i(O_{++}(\gamma_{5}\gamma_{0}) - O_{}(\gamma_{5}\gamma_{0}) - 2iO_{+-}(\gamma_{5}\gamma_{0}))$	-2		
$\bar{\psi}\gamma_5\vec{\gamma}\psi$	$O_{++}(\gamma_5\vec{\gamma}) + O_{}(\gamma_5\vec{\gamma})$	0^+	singlet $\gamma_5 \vec{\gamma}$, $\gamma_0 \gamma_5 \vec{\gamma}$	
$\bar{\psi}\gamma_0\gamma_5\vec{\gamma}\psi$	$O_{+-}(\gamma_0\gamma_5ec\gamma)$	0		
$\bar{\psi}\gamma_0ec{\gamma}\psi$	$O_{+-}(\gamma_0ec{\gamma})$	0-	singlet $\vec{\gamma}, \gamma_0 \vec{\gamma}$	
$ar{\psi}ec{\gamma}\psi$	$O_{+-}(ec{\gamma})$	0		
$\psi^T C \vec{\gamma} \psi$	$-i(O_{++}(\gamma_{5}\vec{\gamma}) - O_{}(\gamma_{5}\vec{\gamma}) + 2iO_{+-}(\gamma_{5}\vec{\gamma}))$	2^{-}	triplat ve v	
$\psi^\dagger C ec \gamma \psi^*$	$-i(O_{++}(\gamma_5\vec{\gamma}) - O_{}(\gamma_5\vec{\gamma}) - 2iO_{+-}(\gamma_5\vec{\gamma}))$	-2^{-}	-2 ⁻	

Results: Observables

• We calculate the PCAC Mass:

$$m_{\text{PCAC}} = \frac{\sum_{\vec{x}} \langle \partial_0 A_0(x) P(0) \rangle}{2 \sum_x \langle P(x) P(0) \rangle}$$

with $A_0(x) = \overline{\psi}_{M+}(x)\gamma_0\gamma_5\psi_{M-}(x)$ and $P(x) = \overline{\psi}_{M+}(x)\gamma_5\psi_{M-}(x)$

- Meson Masses
- Glueball Masses

 \rightarrow Mass of 0⁺⁺ glueball

- Gluino-Glue mass (spin 1/2 Majorana fermion) G. Bergner *et al.* JHEP 09 (2012) 108, [arXiv:1206.2341] Operator: $O = \sum_{\mu\nu} \frac{1}{2} [\gamma_{\mu}, \gamma_{\nu}] \operatorname{Tr} [F^{\mu\nu} \psi_{M}]$
- Torelon Masses
 - $\rightarrow\,$ String Tension σ
- Wilson Loops
 - $\rightarrow~$ String Tension σ
- Dirac Mode Number $\overline{v}(\Omega)$
 - $\rightarrow\,$ Mass Anomalous Dimension

- This theory has not been investigated on the Lattice before.
- What parameters (β and *am*) shall we use?
- We looked at the average plaquette on a 4⁴ lattice for $1.4 \le \beta \le 2.8$ and $-1.7 \le am \le -0.1$

- This theory has not been investigated on the Lattice before.
- What parameters (β and *am*) shall we use?
- We looked at the average plaquette on a 4⁴ lattice for $1.4 \le \beta \le 2.8$ and $-1.7 \le am \le -0.1$
- Bulk phase transition at $\beta = 1.9$ and am = -1.65.
- Perform spectroscopy for $8^3 \times 16$, $12^3 \times 24$, $16^3 \times 32$ and $24^3 \times 48$ and $\beta = 2.05$ and $am \sim -1.5$
- We use the HiRep code.

Lattice	V	-am	am _{PCAC}	N _{conf}
A1	16×8^3	1.475	0.1489(9)	2400
A2	16×8^3	1.500	0.1101(12)	2200
A3	16×8^3	1.510	0.0904(14)	2400
A4	16×8^3	1.510	0.0872(22)	4000
B1	24×12^3	1.475	0.1493(5)	2400
B2	24×12^3	1.500	0.1113(8)	2300
B3	24×12^3	1.510	0.09226(92)	4000
C1	32×16^3	1.475	0.1485(4)	2100
C2	32×16^3	1.490	0.1279(2)	2300
C3	32×16^3	1.510	0.09111(31)	2200
C4	32×16^3	1.510	0.09048(52)	2300
C5	32×16^3	1.514	0.08223(34)	2300
C6	32×16^3	1.519	0.06587(37)	2300
C7	32×16^3	1.523	0.04840(54)	2200
D1	48×24^3	1.510	0.09130(27)	1534
D2	48×24^3	1.523	0.04722(43)	2168

Results: Finite Volume effects

Results: Spectrum

Results: Spectrum

- The determination of the mass anomalous dimension γ_* is one of our goals.
- This is important for mass scaling.
- For phenomenologically viable TC model a large anomalous dimension is required $\gamma_* \simeq 1$
- Determination of the mass anomalous dimension
 - Simple inspection:

$$L_{\rm x}am_{\gamma_5} \propto L_{\rm x}am_{\rm PCAC}^{\frac{1}{1+\gamma_*}}$$

Let us vary $0.1 \leq \gamma_* \leq 2.0$

- The determination of the mass anomalous dimension γ_* is one of our goals.
- This is important for mass scaling.
- For phenomenologically viable TC model a large anomalous dimension is required $\gamma_* \simeq 1$
- Determination of the mass anomalous dimension
 - Simple inspection:

$$L_x am_{\gamma_5} \propto L_x am_{\text{PCAC}}^{\frac{1}{1+\gamma_*}}$$

Let us vary $0.1 \leq \gamma_* \leq 2.0$

- The determination of the mass anomalous dimension γ_* is one of our goals.
- This is important for mass scaling.
- For phenomenologically viable TC model a large anomalous dimension is required $\gamma_* \simeq 1$
- Determination of the mass anomalous dimension
 - Simple inspection:

$$L_x am_{\gamma_5} \propto L_x am_{\text{PCAC}}^{\frac{1}{1+\gamma_*}}$$

Let us vary $0.1 \leq \gamma_* \leq 2.0$

 $ightarrow \gamma_* \sim 0.9 - 1.1$

- The determination of the mass anomalous dimension γ_* is one of our goals.
- This is important for mass scaling.
- For phenomenologically viable TC model a large anomalous dimension is required $\gamma_* \simeq 1$
- Determination of the mass anomalous dimension

– Simple inspection:

$$L_x am_{\gamma_5} \propto L_x am_{\text{PCAC}}^{\frac{1}{1+\gamma_*}}$$

Let us vary $0.1 \le \gamma_* \le 2.0$

$$\gamma_* \sim 0.9 - 1.1$$

– The Dirac Mode Number per unit volume $\overline{\nu}(\Omega)$:

- The determination of the mass anomalous dimension γ_* is one of our goals.
- This is important for mass scaling.
- For phenomenologically viable TC model a large anomalous dimension is required $\gamma_* \simeq 1$
- Determination of the mass anomalous dimension
 - Simple inspection:

$$L_x am_{\gamma_5} \propto L_x am_{\text{PCAC}}^{\frac{1}{1+\gamma_*}}$$

Let us vary $0.1 \le \gamma_* \le 2.0$

$$ightarrow \gamma_* \sim 0.9 - 1.1$$

- The Dirac Mode Number per unit volume $\overline{v}(\Omega)$: Fit:

$$a^{-4}\bar{v}(\Omega) \approx a^{-4}\bar{v}_0(m) + A\left[(a\Omega)^2 - (am)^2\right]^{\frac{2}{1+\gamma_*}}$$

according to the details provided in A. Patella, PhysRevD.86:025006,2012 [arXiv:1204.4432].

- The determination of the mass anomalous dimension γ_* is one of our goals.
- This is important for mass scaling.
- For phenomenologically viable TC model a large anomalous dimension is required $\gamma_* \simeq 1$.
- Determination of the mass anomalous dimension.
 - Simple inspection:

$$L_x am_{\gamma_5} \propto L_x am_{\text{PCAC}}^{\frac{1}{1+\gamma_*}}$$

Let us vary $0.1 \le \gamma_* \le 2.0$

$$\rightarrow \gamma_* \sim 0.9 - 1.1$$

- The Dirac Mode Number per unit volume $\overline{v}(\Omega)$: Fit:

$$a^{-4}\bar{v}(\Omega) \approx a^{-4}\bar{v}_0(m) + A\left[(a\Omega)^2 - (am)^2\right]^{\frac{2}{1+\gamma_*}}$$

according to the details provided in A. Patella, PhysRevD.86:025006,2012 [arXiv:1204.4432]. $\rightarrow \gamma_* \sim 0.9 - 0.95$

Discussion and Conclusions

- We have carried out the first look at SU(2) with one Dirac adjoint fermion.
- We have performed an initial exploratory study of the phase structure in the βm plane.
- Quantitative studies at a variety of lattice sizes.
 - Mesons spectrum.
 - Gluino-Glue spectrum.
 - Glueball spectrum.
 - Torelon masses (String Tension).
 - Static Potential (String Tension).
 - Mass anomalous dimension.
- Results suggest that the theory is IR-Conformal or near-conformal.
- With large anomalous dimension.

THANK YOU!!!

Results: Potential

