Large volume results in SU(2) with adjoint fermions

Luigi Del Debbio Higgs Centre for Theoretical Physics - University of Edinburgh

• work in collaboration with: B Lucini, A Patella, C Pica, A Rago, S Roman

Mainz, July 2013

IRFP scaling & spectrum of the theory

Scaling laws for the spectrum in the neighbourhood of a fixed point:

 $M_H \propto \mu \, m^{\frac{1}{1+\gamma_*}}$

[Luty 08, DeGrand 09, LDD et al 09]

\mathcal{O}	def	$\langle 0 \mathcal{O}(0) J^{\mathrm{P(C)}}(p) \rangle$	$J^{\mathrm{P(C)}}$	$\Delta_{\mathcal{O}} = d_{\mathcal{O}} + \gamma_{\mathcal{O}}$	$\eta_{G[F]}$
S	$\bar{q}q$	G_S	0^{++}	$3 - \gamma_*$	$(2-\gamma_*)/y_m$
S^a	$ar q \lambda^a q$	G_{S^a}	0^+	$3-\gamma_*$	$(2-\gamma_*)/y_m$
P^{a}	$ar q i \gamma_5 q$	G_{P^a}	0-	$3-\gamma_*$	$(2-\gamma_*)/y_m$
V	$ar q \gamma_\mu q$	$\epsilon_{\mu}(p)M_VF_V$	1	3	$1/y_m$
V^a	$ar q \gamma_\mu \lambda^a q$	$\epsilon_{\mu}(p)M_V F_{V^a}$	1-	3	$1/y_m$
A^a	$\bar{q}\gamma_{\mu}\gamma_{5}\lambda^{a}q$	$\epsilon_{\mu}(p)M_{A}F_{A^{a}}\left[ip_{\mu}F_{P^{a}}\right]$	$1^{+}[0^{-}]$	3	$1/y_m \left[1/y_m\right]$

Spectrum for SU(2) + 2 adjoint fermions

• Overall picture: non-singlet meson states & glue

Finite volume effects?

Qualitative evidence for a conformal spectrum Need large lattices and small masses to control systematic errors

[LDD et al 11]

4

New lattices

						lattice	V	$-am_0$	N_{traj}	t_{traj}	$\langle P \rangle$	au	λ	$ au_\lambda$
						A10	64×8^3	1.15	810	3	0.66536(22)	3.6(1.2)	0.2005(58)	1.42(31)
						A11	64×12^3	1.15	530	1.5	0.66601(15)	1.93(59)	0.2054(40)	1.54(43)
2.5	<u> </u>		0 ⁺⁺ glueb	all mass	S	C5	64×16^{3}	1.15	1500	1.5	0.665992(61)	2.32(46)	0.2116(16)	2.38(48)
		•	2 ⁺⁺ glueb	all mass	S	D4	64×24^3	1.15	2387	1.5	0.665927(26)	3.92(79)	0.21478(70)	1.70(24)
			$a \sigma^{1/2} (\sigma$	– strina	tensio	F1	64×32^3	1.15	2541	1.5	0.665946(30)	3.37(62)	0.2115(12)	1.06(12)
2.0	- I	a 0 (0			G1	80×48^3	1.15	2200	1.5	0.665943(17)	5.1(1.2)	0.2237(17)	0.637(58)	
						B2	24×12^3	1.05	7819	1	0.647633(70)	6.79(99)	1.4936(51)	5.80(78)
≥ _{1.5} ື	Γ	ш			C6	64×16^3	1.05	2648	1.5	0.647645(48)	4.63(96)	1.4389(36)	1.26(14)	
		∏				D5	64×24^3	1.05	4000	1.5	0.647695(37)	3.56(53)	1.3906(45)	0.722(54)
		+ ⁺ ⁺			F2	48×32^3	1.05	3590	1.5	0.647680(30)	4.28(74)	1.3708(49)	0.632(45)	
			+ +	*		TWA1	64×8^3	1.15	565	1.5	0.66665(22)	2.8(1.0)	0.5557(96)	0.85(18)
1.0			+		<u> </u>	TWB1	64×12^3	1.15	741	1.5	0.66590(11)	2.96(96)	0.2709(48)	1.93(50)
	L		.	<u> </u>	<u> </u>	TWC1	64×16^3	1.15	1162	1.5	0.665990(61)	2.91(73)	0.2484(17)	6.2(2.2)
		ŧ		#	X	TWD1	64×24^3	1.15	2701	1.5	0.665912(35)	4.63(95)	0.21840(88)	2.43(37)
0.5	- 	- <u>I</u>												
		-		⋕ ⋕⋕	¥									

0.0

0.2

0.4

Larger volumes - heavier mass

Larger volumes - heavier mass

Larger volumes - lighter mass

Mesonic mass ratios - lighter mass

GMOR relation and FSE - lighter mass

Topology sampling?

$$\partial_t V_t(x,\mu) = Z[V_t](x,\mu)V_t(x,\mu)$$

$$Q = -\frac{a^4}{32\pi^2} \sum_{x} \epsilon_{\mu\nu\rho\sigma} \operatorname{tr} \left[G_{\mu\nu}(x) G_{\rho\sigma}(x) \right]$$

Topology defined using WF

Dirac Eigenvalues

Scaling of the eigenvalue density:

 $\langle \bar{q}q \rangle \stackrel{m \to 0}{\sim} m^{\eta \bar{q}q} \iff \rho(\lambda) \stackrel{\lambda \to 0}{\sim} \lambda^{\eta \bar{q}q}$. [DeGrand 09, LDD & Zwicky 10, Patella 12]

Measure the mode number of $D^{\dagger}D + m^2 \longrightarrow \nu(M,m) = C + (M^2 - m^2)^{2/(1+\gamma_*)}$

Finite-size scaling

FSS for the masses in the spectrum:

$$M_H = L^{-1} f(x) \qquad \qquad x = L^{y_m} m$$

In order to recover the correct scaling with m at **infinite volume**:

$$f(x) \sim x^{1/y_m}$$
, as $x \to \infty$

If we go to the massless limit, at **fixed** volume and cut-off, the masses of the states in the spectrum of the theory saturate and scale as:

$$M_H \propto L^{-1}$$

FSS - example

γ_{*} = 0.371

FSS - asymptotic behaviour

8 Preliminary = 8 = 12 = 16 = 24 6 L = 32 1 1-L = 48 ۲ $y_m \log(M_{PS}L)/\log(x)$ ۲ 4 2 0 ⊾ 0 10 20 25 30 15 5 $L^{1+\gamma_*}m$

 $\gamma_{\star} = 0.371$

Conclusions

Spectrum in the mesonic sector is under control - confirm our earlier observations

Data remain **consistent** with conformal scaling

Lighter states in the gluonic sector are difficult (variational method, centre symmetry)

Topology needs to be monitored

Eigenvalues of Dirac operator yield the best determination of the anomalous dimension

FSS compatible with lattice data