
Large volume results in SU(2) with adjoint fermions

Luigi Del Debbio
Higgs Centre for Theoretical Physics - University of Edinburgh

1

Mainz, July 2013

• work in collaboration with: B Lucini, A Patella, C Pica, A Rago, S Roman

Tuesday, 30 July 13



IRFP scaling & spectrum of the theory
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Scaling laws for the spectrum in the neighbourhood of a fixed point:

MH / µm
1

1+�⇤

O def ⇥0|O(0)|JP(C)(p)⇤ JP(C) �O = dO + �O ⇤G[F ]

S q̄q GS 0++ 3� �⇥ (2� �⇥)/ym

Sa q̄⌅aq GSa 0+ 3� �⇥ (2� �⇥)/ym

P a q̄i�5q GPa 0� 3� �⇥ (2� �⇥)/ym

V q̄�µq ⇥µ(p)MV FV 1�� 3 1/ym

V a q̄�µ⌅aq ⇥µ(p)MV FV a 1� 3 1/ym

Aa q̄�µ�5⌅aq ⇥µ(p)MAFAa [ipµFPa ] 1+ [0�] 3 1/ym [1/ym]

[Luty 08, DeGrand 09, LDD et al 09]
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Spectrum for SU(2) + 2 adjoint fermions

• Overall picture: non-singlet meson states & glue
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[LDD et al 09]
JK:”Does the system have a chance to break chiral 
symmetry?”
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Finite volume effects?
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Finite volume effects

Qualitative evidence for a conformal spectrum 
Need large lattices and small masses to control systematic errors
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New lattices
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], where we found that systematic errors of approximately 10% are common on lattices such that MPSL < 10, where
mPS indicates the mass of the lightest pseudoscalar state in the spectrum. We have therefore embarked in large
colume simulations of the theory, in order to provide results for the spectrum in a regime where systematic errors are
below 1%. The simulations have been performed using the code developed in Ref. [? ]. A detailed description of the
methodology, and of the lattices simulated in this work is reported in Sect. ??.

The new volumes simulated are large enough to avoid finite temperature e↵ects, and to allow us to extrapolate the
data for the spectrum to the infinite volume limit for two values of the fermion mass. These are the first results for
the spectrum of the MWT that can be extrapolated to the thermodynamical limit with an uncertainty at the percent
level. The results for the full spectrum, including glueball states, and the string tension, are discussed in Sect. ??.

II. METHODOLOGY

We have simulated MWT using the RHMC algorithm described in Ref. [? ]. In order to identify, and control, the
systematic e↵ects due to the finite size of the lattices, we have simulated the theory on a series of lattices, increasing
both the temporal and the spatial extent of the system. All simulations have been performed at fixed lattice bare
coupling � = 2.25, and for two values of the fermion bare mass am0 = �1.05,�1.15. As a further tool to investigate
finite volume e↵ects, we have compared the spectrum obtained from simulations with the usual periodic boundary
conditions, to the one obtained with twisted boundary conditions, as defined in Ref. [? ]. The detailed implementation
of the twisted boundary conditions is described below. In the infinite volume limit, results should be independent of
the bounday conditions, and therefore we can use the dependence on the boundary conditions to monitor whether or
not the theory has reached the large volume asymptotic behaviour. The new runs are listed in Tab. I.

lattice V �am0 Ntraj ttraj hP i ⌧ � ⌧�

A10 64⇥ 8

3
1.15 810 3 0.66536(22) 3.6(1.2) 0.2005(58) 1.42(31)

A11 64⇥ 12

3
1.15 530 1.5 0.66601(15) 1.93(59) 0.2054(40) 1.54(43)

C5 64⇥ 16

3
1.15 1500 1.5 0.665992(61) 2.32(46) 0.2116(16) 2.38(48)

D4 64⇥ 24

3
1.15 2387 1.5 0.665927(26) 3.92(79) 0.21478(70) 1.70(24)

F1 64⇥ 32

3
1.15 2541 1.5 0.665946(30) 3.37(62) 0.2115(12) 1.06(12)

G1 80⇥ 48

3
1.15 2200 1.5 0.665943(17) 5.1(1.2) 0.2237(17) 0.637(58)

B2 24⇥ 12

3
1.05 7819 1 0.647633(70) 6.79(99) 1.4936(51) 5.80(78)

C6 64⇥ 16

3
1.05 2648 1.5 0.647645(48) 4.63(96) 1.4389(36) 1.26(14)

D5 64⇥ 24

3
1.05 4000 1.5 0.647695(37) 3.56(53) 1.3906(45) 0.722(54)

F2 48⇥ 32

3
1.05 3590 1.5 0.647680(30) 4.28(74) 1.3708(49) 0.632(45)

TWA1 64⇥ 8

3
1.15 565 1.5 0.66665(22) 2.8(1.0) 0.5557(96) 0.85(18)

TWB1 64⇥ 12

3
1.15 741 1.5 0.66590(11) 2.96(96) 0.2709(48) 1.93(50)

TWC1 64⇥ 16

3
1.15 1162 1.5 0.665990(61) 2.91(73) 0.2484(17) 6.2(2.2)

TWD1 64⇥ 24

3
1.15 2701 1.5 0.665912(35) 4.63(95) 0.21840(88) 2.43(37)

TABLE I: List of lattices used in this study.

A. Observables

The observables discussed in the next Section are obtained from the expectation values of field correlators, using
techniques that are standard in lattice simulations.

Mesonic observables are extracted from two-point functions of fermion bilinears:

f��0(t) =
X

~x

h��(~x, t)
†��0(~0, 0)i , (1)

where

��(~x, t) =  ̄1(~x, t)� 2(~x, t) . (2)

Note that we always consider non-singlet flavor states, as indicated by the indices 1, 2 that appear in the definition
of the fermion bilinear. The matrices � and �0 act in spin space, and determine the quantum numbers of the states
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Larger volumes - heavier mass
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Preliminary
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GMOR relation and FSE - lighter mass
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Topology sampling?

11

@tVt(x, µ) = Z[Vt](x, µ)Vt(x, µ)

Q = � a

4

32⇡2

X

x

✏

µ⌫⇢�

tr [G
µ⌫

(x)G
⇢�

(x)]
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Figure 3. Mode number per unit volume for the set S1 (am0 = �1.15 on a 64 ⇥ 243 lattice): lattice

data and fit result in log-log scale. The reference fit is S1:F4 in table 6. The parameters in the axis labels

have been chosen to be a�4⌫̄0 = 1.31 ⇥ 10�5 and am = 0.0826 (best-fit results). The black points are the

data computed by numerical simulations. The red line is the best fit to eq. (3.8), while the orange band

corresponds to the 1� region. The blue dashed lines delimit the data used for the fit.

4.3 Set S2: finite-volume e↵ects

As analyzed in [23], meson masses computed on the set S1 (am0 = �1.15 on 64⇥ 243) are identical

to the ones computed on the set S2 (am0 = �1.15 on 64 ⇥ 323), within the statistical errors that

are of the order of 0.5%. It is reasonable to expect that finite-volume e↵ects are under control

also for the mode number. However this is explicitly checked by computing the mode number per

unit volume using the projector method for few values of a⌦. The agreement is always within

1� as shown in table 4. Since larger finite-volume e↵ects are expected for lower eigenvalues, we

can conclude that the finite-volume e↵ects for the set S1 are always negligible with respect to the

statistical errors for a⌦ � 0.086.

4.4 Set S3: lighter mass

The set S3 (am0 = �1.18 on 64⇥243) is used to check the stability of the  ̄ anomalous dimension

while going closer to the chiral limit. For this set no detailed investigation of finite-volume e↵ects

is available. However the isotriplet pseudoscalar meson is expected to be about 10% lighter than

in infinite volume (see analysis in [23]). Similarly one has to expect sizable finite-volume e↵ects

also for the spectral density at low eigenvalues, while for larger eigenvalues the finite-volume e↵ects

become smaller. I will work under the assumption that the finite-volume e↵ects are comparable in

the two sets S1 and S3 at fixed eigenvalue. Therefore the analysis is restricted to the safe range

a⌦ � 0.086.

– 8 –

Dirac Eigenvalues
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can be isolated via a twice-subtracted spectral representation:

〈q̄q〉 = −2m

∫ µ

0

dλ
ρ(λ)

m2 + λ2
− 2m5

∫ ∞

µ

dλ

λ4

ρ(λ)

m2 + λ2
+ γ1m+ γ2m

3 . (25)

The subtraction constants γ1 and γ2 contain the UV-divergences. Their respective be-

haviours are γ1 ∼ Λ2
UV, and γ2 ∼ log [Λ2

UV], and their actual values depend on two physical
renormalization conditions used to define the finite condensate on the LHS of Eq. (24).
We shall investigate the limiting behaviour when m → 0. The second integral and the

subtraction terms in Eq. (25) vanish in the chiral limit (m → 0). Therefore only the
first integral, sensitive to the IR region, can result in a non-analytic term and has to be

investigated further. A simple change of variable yields:

〈q̄q〉 = −2

∫ µ/m

0

dx
ρ(mx)

1 + x2
+A(m) , (26)

where A(m) stands for an analytic function of m. From Eq. (26), following the same
arguments used in QCD, one can readily obtain:

〈q̄q〉 m→0∼ mηq̄q ⇔ ρ(λ)
λ→0∼ ληq̄q . (27)

This in turn implies:

ηq̄q|QCD−like = 0 , ηq̄q|mCGT > 0 , (28)

since in QCD the condensate remains finite in the chiral limit, while it vanishes in mCGT.

Let us derive the same scaling coefficient ηq̄q (4) from a RG analysis. The starting point
is the two-point function Cq̄q(t; m̂, µ), as in Eq. (8), where the hadronic field H = q̄q, and
the explicit dependence on the coupling g is suppressed. The solution of the RG equations

for this specific case is:

Cq̄q(t; m̂, µ) = b−2∆q̄qCq̄q(tb
−1; bymm̂, µ) . (29)

Imposing again bymm̂ = 1, finally leads to:

Cq̄q(t; m̂, µ) = m̂
2∆q̄q
ym Cq̄q(tm̂

1/ym ; 1, µ) . (30)

Inserting a complete set of states the exponential decrease of any state other than the

vacuum for large t results in:

Cq̄q(t; m̂, µ)
t→∞∼ m2ηq̄q , (31)

whence the scaling exponent (27) follows:

ηq̄q =
∆q̄q

ym
=

3− γ∗
1 + γ∗

. (32)
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Scaling of the eigenvalue density:

Measure the mode number of  D†D +m2

[DeGrand 09, LDD & Zwicky 10, Patella 12]

�⇤ = 0.37(2)

[Patella 12]

⌫(M,m) = C +
�
M2 �m2

�2/(1+�⇤)

Figure 11: Modenumber per unit volume: lattice data and fit results in log-log scale. The
blue dots are the data points from Table 1. The red curve is the best fit line with the
parameters we determined. The two vertical green lines delimit the data used for the fit
i.e. between points 29 and 48.

24

�⇤ = 0.38(2)

160⇥ 163,m ⇡ 0

[Roman 13]
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Finite-size scaling 
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FSS for the masses in the spectrum:

MH = L

�1
f(x)

In order to recover the correct scaling with m at infinite volume:

f(x) ⇠ x

1/ym
, as x ! 1

If we go to the massless limit, at fixed volume and cut-off, the masses of the states in the 
spectrum of the theory saturate and scale as:

MH / L�1

x = L

ym
m
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FSS - example
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FSS - asymptotic behaviour
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Conclusions
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Spectrum in the mesonic sector is under control - confirm our earlier observations

Data remain consistent with conformal scaling

Lighter states in the gluonic sector are difficult (variational method, centre symmetry)

Topology needs to be monitored 

Eigenvalues of Dirac operator yield the best determination of the anomalous dimension

FSS compatible with lattice data
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