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Introduction

In the standard Standard Model, the Higgs field is an elemen-
tary complex scalar, whose couplings to the SU(2) × U(1)
electroweak gauge bosons γ,W±, Z are prescribed by gauge
invariance. It has Yukawa couplings to the quarks and leptons,
and a quartic self-coupling. Its quadratic self-coupling with di-
mensions of mass-squared is negative, so that it develops a
vacuum expectation v which breaks SU(2) × U(1) sponta-
neously. The W± and Z gain masses by ‘eating’ the 3 Gold-
stone bosons. v gives masses to the fermions through the
Yukawa couplings. The remaining (radial) component of the
Higgs field is the so-called Higgs particle.

We consider the possibility that this simplest model of the Higgs
sector of the Standard Model is merely an effective field theory,
and that the Higgs fields are composite.

The simplest theories of this type are Technicolor theories. These
are QCD-like gauge theories with massless (techni-)quarks, where
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the (techni-)pions play the role of the Higgs field giving masses
to the W s and Z.

Technicolor theories which are merely scaled-up QCD are not
phenomenologically viable. It can be argued that Walking Tech-
nicolor theories, where the gauge group and fermion content are
such that there is a range of length/mass scales where the run-
ning coupling evolves very slowly, might overcome these prob-
lems.

We are trying to identify gauge theories that walk. If we find
such a theory, we then need to check if it is indeed phenomeno-
logically viable.

An important aspect of an acceptable theory is that it must de-
scribe the light (mH ≈ 1

2v) Higgs-like particle observed at the
LHC.

Gauge theories with fermion content such that the theory is
asymptotically free, but the 1- and 2-loop contributions to the
β-function have opposite signs, are expected to be either con-
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formal or walking.

Our candidate theory is (techni-)QCD with 2 massless (techni-
)colour-sextet (techni-)quarks, which could be either walking or
conformal. We contrast this theory with the 3-(techni-)flavour
version, which is expected to be conformal.

QCD with 2 colour-sextet quarks has 3 Goldstone bosons – the
correct number to give mass to the W s and Z with none left
over.

Because chiral symmetry breaking and confinement occur at
very different scales, one expects (techni-)hadrons associated
with both scales. Hence light hadrons at the confinement scale
could well have masses < fπ(TC) = v. Thus we can get light
Higgs-like particles other than the dilaton.

Other groups working on this model include DeGrand et al. and
Fodor et al..

We simulate lattice QCD with 2 sextet quarks at finite temper-
ature, and measure the running of the couplings at the decon-
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finement and chiral transitions, as the lattice spacing is varied.
On lattices with finite temporal extent Nta and spatial extent
Nsa with Ns >> Nt, the temperature is T = 1/Nta. If our
transitions are finite temperature transitions, they will remain at
fixed temperatures as the lattice spacing a is varied. If we in-
crease Nt → ∞ at either transition, a → 0. The bare (lattice)
coupling g at the transition should approach zero as Nt → ∞
in the manner described by the (perturbative) β-function.

If on the other hand, the transition is a bulk transition, g will
approach a non-zero limit as Nt → ∞. In this case the field
theory is conformal.

Since the deconfinement transition occurs at a value of β =
6/g2 that is too small to observe asymptotic freedom, for the
Nts we use, we concentrate our effort on the chiral transition β,
βχ.

We simulate theNf = 2 theory on lattices withNt = 4,6,8,12
and hope to extend this to larger Nt.
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Preliminary results indicate that βχ(Nt = 12) is significantly
larger than βχ(Nt = 8), but by less than what the 2-loop β-
function would predict.

We simulate the Nf = 3 theory on lattices with Nt = 4,6,8
and plan to extend this to Nt = 12.

Preliminary results indicate that βχ(Nt = 8) is significantly
greater than βχ(Nt = 6) which would indicate that we are not
yet at weak enough coupling.
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QCD with colour-sextet staggered quarks at finite T

We use the simplest (Wilson) gauge action:

Sg = β
∑

2


1 − 1

3
Re(TrUUUU)


 . (1)

Formally, the unimproved staggered quark action action is:

Sf =
∑

sites




∑ Nf/4
f=1 ψ

†
f [D/+m]ψf


 , (2)

where where D/ =
∑

µηµDµ with

Dµψ(x) =
1

2
[U (6)
µ (x)ψ(x+ µ̂) −U (6)†

µ (x− µ̂)ψ(x− µ̂)]. (3)

We use the RHMC algorithm to simulate values of Nf/4 which
are not integers, in particular Nf = 2,3.
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Nf = 2

Nt = 8

Mainly on a 163 × 8 lattice.

Simulations performed on a 243 × 8 lattice at β = 6.7 and
β = 6.9, both with m = 0.0025, indicate that finite lattice size
errors are small for Ns = 16.

No new 163 × 8 results since Lattice 2012.

Simulations were performed at m = 0.02, m = 0.01, m =
0.005, and m = 0.0025.

In the neighbourhood of the chiral transition, 6.6 ≤ β ≤ 6.8,
we have performed runs of 50,000 length-1 trajectories at m =
0.02, m = 0.01, and m = 0.005 for each β and m. At m =
0.0025 we have performed runs of 100,000 trajectories for each
β in this range.

Since it is difficult if not impossible to extrapolate either the un-
subtracted or subtracted chiral condensates to zero quark mass
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with sufficient reliability to determine the position of the chiral-
symmetry-restoration phase transition accurately, we estimate
the value of βχ from the peaks in the (disconnected) chiral sus-
ceptibility:

χψ̄ψ =
V

T


〈(ψ̄ψ)2〉 − 〈ψ̄ψ〉2




extrapolated to m = 0.

Since the positions of the peaks in these susceptibilities show
little mass dependence, we take the position of the peak for
m = 0.0025 as our estimate of βχ. This gives βχ = 6.69(1).

These susceptibilities are shown in figure 1.

For m = 0.0025 and β = 6.7 and β = 6.9, these susceptibili-
ties are consistent with those measured on a 243 × 8 lattice.
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Figure 1: Chiral susceptibilities on a 163 × 8 lattice.
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Nt = 12

We are now extending our simulations to Nt = 12 on 243 × 12
lattices, at quark masses m = 0.01, m = 0.005, and m =
0.0025.

In the neighbourhood of the chiral transition 6.6 ≤ β ≤ 6.9 we
perform simulations at βs spaced by δβ = 0.02.

So far we have simulated 25,000 – 50,000 length-1 trajectories
at each (β,m) in this range (with 2 exceptions).

Figure 2 shows the unsubtracted chiral condensates 〈ψ̄ψ〉 mea-
sured in these simulations.

Note that, although these suggest that the condensate will van-
ish in the chiral limit for β sufficiently large, any attempt to ex-
trapolate to m = 0 to estimate βχ would be plagued with sys-
tematic uncertainties. Using subtracted condensates improves
the situation, but not sufficiently to extract βχ accurately.
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Figure 2: Chiral condensates on a 243 × 12 lattice.
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Figure 3: Wilson lines (Polyakov Loops) on a 243 × 12 lattice.
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To determine the position βχ of the chiral transition with suffi-
cient accuracy, we examine the peak in the (disconnected) chi-
ral susceptibility as a function of mass.

These susceptibilities are shown in figure 4.

Both the m = 0.005 and m = 0.0025 susceptibilities show
peaks. While the ‘data’ is consistent with there being little mass
dependence of the position of the peaks, it is not yet compelling.
More statistics is needed.

Our best estimate of βχ from the current data is βχ = 6.78(2).

This implies that:

βχ(Nt = 12) − βχ(Nt = 8) = 0.09(2)

compared with the 2-loop perturbative prediction

βχ(Nt = 12) − βχ(Nt = 8) ≈ 0.12
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Figure 4: Chiral susceptibilities on a 243 × 12 lattice.
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243 ×Nt

We simulate this 2-flavour theory on 243×Nt lattices withNt ≤
24 at fixed β, to search for evidence of a transition back to the
chirally broken phase as Nt is increased.

We choose β = 6.9. If the evolution of βχ is governed by the
2-loop β-function, βχ ≈ 6.9 forNt = 18. Hence we should see
evidence for the chiral transition as Nt is increased.

At present, we run on 243×8, 243×10, 243×12, 243×18 and
244 lattices atm = 0.005,m = 0.0025 andm = 0.00125. We
are just starting runs on 243 × 20 and 243 × 22 lattices.

Figure 5 shows the unsubtracted and subtracted chiral conden-
sates as functions of Nt for these runs.
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We follow Fodor et al., defining a subtracted chiral condensate
by:

〈ψ̄ψ〉sub = 〈ψ̄ψ〉 −

mV

∂

∂mV
〈ψ̄ψ〉



mV=m

where mV is the valence quark mass. We should try other
schemes.

Figure 6 shows the chiral susceptibilities for these runs.
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Figure 5: Chiral condensates on 243 × Nt lattices at β = 6.9. From top to
bottom, the masses are m = 0.005, m = 0.0025 and m = 0.00125.
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Figure 6: Chiral susceptibilities on 243 ×Nt lattices at β = 6.9.
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Nf = 3

Nt = 8

We simulate lattice QCD with 3 light quark flavours on 163 × 8
lattices.

We run at m = 0.01 and m = 0.005.

For 6.3 ≤ β ≤ 6.5 (close to the chiral transition) and m =
0.005, we perform runs of 50,000 – 100,000 trajectories at in-
tervals of 0.02 in β.

Figure 7 shows the chiral susceptibilities for these runs.

From this we estimate that βχ = 6.38(2), somewhat larger than
that for Nt = 6.
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Figure 7: Chiral susceptibilities for Nf = 3 on a 163 × 8 lattice.
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Discussions and Conclusions

Nt βd βχ
4 5.40(1) 6.3(1)
6 5.54(1) 6.6(1)
8 5.65(1) 6.69(1)
12 5.75(5) 6.78(2)

Table 1: Nf = 2 deconfinement and chiral transitions for Nt = 4,6,8,12.

•We are simulating lattice QCD with 2 light colour-sextet quarks
at finite temperature, to test whether it has an infrared fixed-
point and is thus conformal, or if it is QCD-like, but with a slowly-
evolving running coupling constant, i.e. if it ‘walks’ and is thus a
Walking-Technicolor candidate.

•We have extended our simulations to Nt = 12. As seen in the
table above, the chiral phase transition moves to larger β as Nt
is increased. However, βχ(Nt = 12)−βχ(Nt = 8) = 0.09(2)
compared with ≈ 0.12 predicted by the 2-loop perturbative β-
function.
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•More statistics is needed to ratify this result. We should also test
if this is a finite size effect. It is possible that the 3-loop term in
the β-function is large in this lattice regularization. Larger Nts
might be needed to clarify this issue. We should also extend our
Nt = 6 simulations to obtain a better estimate of the position of
its chiral phase transition.

• Note that the chiral susceptibility is very sensitive to long ‘time’-
constant modes describing the system’s evolution. These often
have small amplitudes, so that they are not evident in other ob-
servables.

• Our simulations of the 3-flavour theory at Nt = 8 indicate that
the increase in β, βχ(Nt = 8) − βχ(Nt = 6) is appreciably
larger than the ≈ 0.0025 predicted by 2-loop perturbation the-
ory. Nor can we see any evidence that βχ(Nt) is approaching
a non-zero constant as Nt → ∞ as expected, since the this
theory is expected to be conformal. We will therefore need to
perform simulations at Nt = 12.
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• To study the spectrum of the 2-flavour theory, we need to restrict
ourselves to the region β < βd. For this β to lie in the weak-
coupling domain, we will require rather large lattices, since our
experience with the chiral transition tells us that the crossover
from strong- to weak-coupling occurs somewhere in the regime
β = 6.3–6.6 while βd(Nt = 12) ≈ 5.75.

• For zero temperature physics, fπ is the relevant scale, since we
know that fπ = v ≈ 246 GeV.

• Another promising Walking Technicolor candidate, which we in-
tend to study is SU(2) gauge theory with 3 adjoint Majorana/Weyl
quarks.

These simulations were performed on Hopper and Carver at NERSC,
Kraken at NICS, and Fusion at LCRC, Argonne.
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Appendix
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Figure 8: Unsubtracted and subtracted chiral condensates on a 163 × 8 lattice.
Nf = 2.
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Figure 9: Unsubtracted and subtracted chiral condensates on a 243 ×12 lattice
at m = 0.0025. Nf = 2.
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