Twisted-Mass Lattice QCD using OpenCL An Update

Matthias Bach

Frankfurt Institute for Advanced Studies

Institut für Informatik

in collaboration with: C. Pinke, O. Philipsen, V. Lindenstruth

31st International Symposium on Lattice Field Theory Mainz, 30 July 2013

LOEWE-CSC

- Frankfurt University
- 786 GPU Nodes
- Node:
 - 2 AMD Magny-Cours
 - AMD Radeon HD 5870
- QDR Infiniband
- 285 TFLOPS (#22)
- 740.78 MFLOPS/W
- Green500 #8 Nov 10

Sanam

► Coop:

- FIAS (Frankfurt)
- KACST (Saudi-Arabia)
- 300 Nodes
- Node:
 - 2 Intel Xeon E5-2650
 - 2 AMD FirePro S10000
- FDR Infiniband
- 532 TFLOPS (#52)
- 2351 MFLOPS/W
- Green500 #2 Nov 12

OpenCL and CL²QCD

OpenCL

- Open Standard
- Like CUDA Driver API
 - Kernels
 - Threads
 - C-API
- Wide hardware support
 - CPUs
 - AMD GPUs
 - NVIDIA GPUs
 - Xeon Phi
 - Mobile Devices

CL²QCD

- Twisted Mass / Pure Wilson
- All calculations in OpenCL
- Layered
 - Hardware
 - Kernels
 - QCD-Types
 - Algorithms
- Seperation of Concerns
 - Hardware Specifics
 - Optimization
 - Application Logic

Double-Precision *D* Performance

See also: M. Bach, V. Lindenstruth, O. Philipsen, and C. Pinke, "Lattice QCD based on OpenCL," Computer Physics Communications, p. 19, Mar. 2013.

CG Performance – Hard Scaling

Average Power Consumption

CPU System:

- 2 AMD Bulldozer
 8 Cores, 3 GHz
- tmlqcd

K. Jansen and C. Urbach, "tmLQCD: a program suite to simulate Wilson Twisted mass Lattice QCD," Quantum, May 2009, pp. 1–44, 2009.

GPU System:

- 2 AMD Magny-Cours 12 Cores, 2 GHz
- 1 to 2 AMD Radeon HD7970
- ► CL²QCD

Energy-Efficiency

HMC Setup:

- ▶ 32³ × 12
- N_f = 2 Twisted-Mass
 Wilson Fermions
- *m*_π ≈ 270 MeV

Multiple GPUs:

- 2nd GPU: Seperate HMC Chain
- Projection to 8 GPUs:
 3.9 to 4.25 trajectories per kWh

Total Cost of Aquisition in General Purpose Systems

HMC in Sanam:

- GPU Throughput: 16 times CPU
- ▶ GPU Cost:
 ≈ 25 %
- ▶ GPU Cost Advantage:
 ≈ 12

Total Cost of Aquisition in General Purpose Systems

HMC in Sanam:

- GPU Throughput: 16 times CPU
- GPU Cost:
 ≈ 25 %
- ▶ GPU Cost Advantage:
 ≈ 12

Cost for Inversions:

- Kraken (x86)
 1.14 \$/MFLOPS
- Sequoia (BlueGene/Q) 0.040 \$/MFLOPS
- Sanam (x86 + GPU) 0.038 \$/MFLOPS

Cost on Kraken and Sequoia estimated based on publications.

Total Cost of Aquisition in Dedicated Systems

Based on retail prices

Total Cost of Aquisition in Dedicated Systems

Based on retail prices Comparision should use HMC trajectories!

C. Pinke and O. Philipsen, "The nature of the Roberge-Weiss transition in $N_f = 2$ QCD with Wilson fermions", Monday, 17:50

Utilized LOEWE-CSC and Sanam

Outlook

Achieved:

- ► 100 GFLOPS DP Ø on AMD GPU
- Works on NVIDIA / Intel
- Full HMC on GPU
- Scaling on GPUs within Node
- Four Times as Energy-Efficent as CPU
- Cost-Efficient

In Progress / TODO:

- Staggered Fermions
- Mixed-Precision Solvers
- MPI
- NVIDIA Optimizations
- Intel Optimizations