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Adaptive Multigrid

32°x256 anisotropic clover on 1024 BG/P cores

mixed precision BiCGStab ==
mixed precision multigrid ==t
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Osborn et al, arXiv:1011.2775

Tuesday, July 30, 13



>
Hierarchical algorithms for LQCD nviDi2

« Adaptive Geometric Multigrid
— Based on adaptive smooth aggregation (Brezina et al 2004)
— Low modes have weak-approximation property => locally co-linear
— Apply fixed geometric coarsening (Brannick et al 2007, Babich et al 2010)
— see also Frommer et al 2012

* Inexact Deflation (Liischer 2007)
— Equivalent to adaptive “unsmoothed” aggregation
— Local coherence = Weak-approximation property
— Uses an additive correction vs. MG’s multiplicative correction

 Residual reduced by a constant per iteration
— Convergence in O(1) iterations, O(N) per iteration
— O(N) total solution cost
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Multigrid V-cycle iy}

 Solve
1. Smooth
Compute residual
Restrict residual
Recurse on coarse problem
Prolongate correction
Npleleldp
If not converged, goto 1

* Typically use multigrid as a preconditioner for a Krylov method

« For LQCD, we do not know the null space components that need
to be preserved on the coarse grid

N oUW
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Adaptive Geometric Multigrid nVIDIA

« Adaptively find candidate null-space vectors
— Dynamically learn the null space and use this to define the prolongator
— Algorithm is self learning

* Setup

1. Set solver to be simple smoother

2. Apply current solver to random vector vi = P(D) n;

3. If convergence good enough, solver setup complete

4. Construct prolongator using fixed coarsening (1 -PR) vk =0
= Typically use 4* geometric blocks
= Preserve chirality when coarsening R = ys PT ys = PT

5. Construct coarse operator (D = PT D P)

6. Recurse on coarse problem

/. Set solver to be augmented V-cycle, goto 2
Tuesday, July 30, 13
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Motivation

32796 CG
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Phys. Rev. Lett. 105, 201602 (2010)
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The March of GPUs
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Enter QUDA e

e “QCD on CUDA” - http://lattice.github.com/quda

« Effort started at Boston University in 2008, now in wide use as the
GPU backend for BQCD, Chroma, CPS, MILC, etc.

e Provides:

— Various solvers for several discretizations, including multi-GPU support and
domain-decomposed (Schwarz) preconditioners

— Additional performance-critical routines needed for gauge-field generation
* Maximize performance

— Exploit physical symmetries

— Mixed-precision methods

— Autotuning for high performance on all CUDA-capable architectures

— Cache blocking
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http://lattice.github.com/quda
http://lattice.github.com/quda

Chroma (Lattice QCD) — rf%;\
High Energy & Nuclear Physics
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* For competitiveness, MG on GPU is a must

* GPU requirements very different from CPU

— Each thread is slow, but O(10,000) threads per
GPU

* Fine grids run very efficiently
— High parallel throughput problem

« Coarse grids are worst possible scenario
— More cores than degrees of freedom
— Increasingly serial and latency bound
— Little’s law (bytes = bandwidth * latency)
— Amdahl’s law limiter
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Hierarchical algorithms on heterogeneous architectures "V'"'~

e GPU

sessssss mmmssss | Thousands of cores
s=emmnas meeenns | fOr parallel processing

Few Cores optimized
for serial work
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Design Goals i

* Flexibility
— Deploy level i on either CPU or GPU
— All algorithmic flow decisions made at runtime
— Autotune for a given heterogeneous architecture
* (Short term) Provide optimal solvers to legacy apps
— e.g., Chroma, CPS, MILC, etc.
* (Long term) Hierarchical algorithm toolbox
— Little to no barrier to trying new algorithms
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Multigrid and QUDA Ny

* QUDA designed to abstract algorithm from the heterogeneity

LatticeField

AN

ColorSpinorField GaugeField

7\ /N

cudaColorSpinorField cpuColorSpinorField cudaGaugeField cpuGaugeField
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Multigrid and QUDA VDI

* QUDA designed to abstract algorithm from the heterogeneity

ColorSpinorField GaugeField

7\ /N

cudaColorSpinorField cpuColorSpinorField cudaGaugeField cpuGaugeField
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Multigrid and QUDA VDI

* QUDA designed to abstract algorithm from the heterogeneity

LatticeField

AN

ColorSpinorField GaugeField

Architecture
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Multigrid and QUDA By

* While envisaged to be fairly abstract

— Rarely implemented like this in practice

— Product of rapid development by different developers
« Adding multigrid required a lot of work

— Improves maintainability of QUDA across the board
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Writing the same code for two architectures

« Use C++ templates to abstract arch specifics
— Load/store order, caching modifiers, precision, intrinsics

 CPU and GPU kernels almost identical

— Index computation (for loop -> thread id)
— Block reductions (shared memory reduction and / or atomic operations)

// Applies the grid prolongation operator (coarse to fine) // Applies the grid prolongation operator (coarse to fine)
template <class FineSpinor, class CoarseSpinor> template <class FineSpinor, class CoarseSpinor>
void prolongate(FineSpinor &out, const CoarseSpinor &in, __9global__ void prolongate(FineSpinor out, const
const int *geo map, const int *spin map) { CoarseSpinor in, const int *geo map, const int *spin map) {
for (int x=0; x<out.Volume(); x++) { int x = blockIdx.x*blockDim.x + threadIdx.x;
for (int s=0; s<out.Nspin(); s++) { for (int s=0; s<out.Nspin(); s++) {
for (int c=0; c<out.Ncolor(); c++) { for (int c=0; c<out.Ncolor(); c++) {
out(x, s, ¢) = in(geo_map[x], spin map[s], c); out(x, s, c¢) = in(geo_map[x], spin_map[s], c);
} }
} }
}
}

| CPU GPU
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Current Status

 First multigrid solver working in QUDA as of last Friday
* Some components still on CPU only

Fine grid operator
Block Orthogonalization

Prolongator

Restrictor

Construct coarse gauge field
Coarse grid operator

Vector BLAS

» Designed to interoperate with J. Osborn’s gopgdp implementation
— Can verify algorithm correctness, and share null space vectors
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Very preliminary two-level results nVIDIA

B Prolongation [ Restriction [ Coarse Grid [ Smoothing

level 0 243x128 qcdlib
level 1 83x16

D on GPU

Dc, P, Ron CPU
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QUDA as a Hierarchical Algorithm Tool ™"

* Lots of interesting questions to be explored

» Exploit closer coupling of precision and algorithm

— QUDA designed for complete run-time specification of
precision at any point

— Currently supports 64-bit, 32-bit, 16-bit
— Is 128-bit or 8-bit useful at all for hierarchical algorithms?
* Domain-decomposition (DD) and multigrid
— DD approaches likely vital for strong scaling
— DD solvers are effective for high-frequency dampening
— Overlapping domains likely more important at coarser scales
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mclark at nvidia dot com e

Summary

* Introduction to multigrid on QUDA
 Basic framework complete, proof of concept
* Still lots of work to do
— Most of the nitty gritty details worked out
— Now time for fun
 Beta testing for end of year
— Chroma Wilson / Wilson-clover support first
 Lessons today are relevant for Exascale preparation

Tuesday, July 30, 13


mailto:mclark@nvidia.com
mailto:mclark@nvidia.com

~\
_\
AN
N\
\
b
\\.
>
e EAN
- -
N =
2N
4/ \\
N\ 3
N

Backup slides Y

N\ /\

~




O
Failure of Geometric Multigrid for LQCD "'

2-d Laplace operator error 2-d U(1) Wilson-Dirac operator
with Gauss-Seidel interation after 200 Gauss-Seidel iterations
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Failure of Geometric Multigrid for LQCD v~

2-d Laplace operator error 2-d U(1) Wilson-Dirac operator
with Gauss-Seidel interation after 200 Gauss-Seidel iterations
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Failure of Geometric Multigrid for LQCD """

2-d Laplace operator error 2-d U(1) Wilson-Dirac operator
with Gauss-Seidel interation after 200 Gauss-Seidel iterations
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The Need for Just-In-Time Compilation ™"

* Tightly-coupled variables should be at the register level

* Dynamic indexing cannot be resolved in register variables

— Array values with indices not known at compile time spill out into
global memory (L1 / L2 / DRAM)

// Applies the grid prolongation operator (coarse to fine)

template <class FineSpinor, class CoarseSpinor>

__global  void prolongate(FineSpinor out, const CoarseSpinor in, const
int *geo map, const int *spin map) {

int x = blockIdx.x*blockDim.x + threadIdx.x;
for (int s=0; s<out.Nspin(); s++) {
for (int c=0; c<out.Ncolor(); c++) {
out(x, s, ¢) = in(geo map[x], spin map[s], C);
}
}
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The Need for Just-In-Time Compilation ™"~

* Possible solutions
— Template over every possible Ny ® precision for each MG kernel

— One thread per colour matrix row (inefficient for Ny mod 32 = 0)
— Compile necessary kernel at runtime

// Applies the grid prolongation operator (coarse to fine)
template <class FineSpinor, class CoarseSpinor, int Ncolor, int Nspin>
__global  void prolongate(FineSpinor out, const CoarseSpinor in, const
int *geo map, const int *spin map) {
int x = blockIdx.x*blockDim.x + threadIdx.x;
for (int s=0; s<Nspin; s++) {
for (int c¢=0; c<Ncolor; c++) {
out(x, s, c¢) = in(geo map[x], spin map[s], C);
}
}
}

« JIT support will be coming in CUDA 6.x

— Final performant implementation will likely require this
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Heterogeneous Updating Scheme el
GPU
° Multiplicative MG is ERERERER EEEEREEE
necessarily serial process B
— Cannot utilize both GPU and EEEEEEE EEEEEE
CPU simultanesouly EEEEEEE EEEEEE
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Heterogeneous Updating Scheme nVIDIA
GPU

* Multlpllcatlve MG is SEEERERE EEEEERER
necessarily serial process o
— Cannot utilize both GPU and EEEEEEE EEEEEE
CPU simultanesouly SHRAAEER 5330000
» Additive MG is parallel e —

— Can utilize both GPU and CPU

simultanesouly

« Additive MG requires accurate
coarse-grid solution
— Not amenable to multi-level

— Only need additive correction
at CPU<->GPU level interface

Tuesday, July 30, 13
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The Kepler Architecture nvipi.

* Kepler K20K

PCle I 8.0 GB/s per direction

— 2688 processing cores
— 3995 SP Gflops peak (665.5 fma)
— Effective SIMD width of 32 threads (warp)
* Deep memory hierarchy
— As we move away from registers
* Bandwidth decreases
* Latency increases

— Each level imposes a minimum arithmetic
intensity to achieve peak

* Limited on-chip memory
— 65,536 32-bit registers, 255 registers per thread

Core | | Core C C .
2 2 || — 48 KiB shared memory
Core . Core . _ 1 5 M-IB L2
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QUDA is community driven nVIDIA

Ron Babich (NVIDIA)
Kip Barros (LANL)
Rich Brower (Boston University)

Michael Cheng (Boston University)

Justin Foley (University of Utah)

Joel Giedt (Rensselaer Polytechnic Institute)

Steve Gottlieb (Indiana University)

Balint Joo (Jlab)

Hyung-Jin Kim (BNL)

Jian Liang (IHEP)

Claudio Rebbi (Boston University)

Guochun Shi (NCSA -> Google)

Alexei Strelchenko (Cyprus Institute -> FNAL)
Alejandro Vaquero (Cyprus Institute)

Frank Winter (UoE -> Jlab)
Yibo Yang (IHEP) e P [
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QUDA Mission Statement VD12

* QUDA is
— a library enabling legacy applications to run on GPUs
— open source so anyone can join the fun
— evolving

* more features
 cleaner, easier to maintain
— a research tool into how to reach the exascale
* Lessons learned are mostly (platform) agnostic
» Domain-specific knowledge is key
* Free from the restrictions of DSLs, e.g., multigrid in QDP
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Mapping the Wilson Dslash to CUDA =

e Assign a single space-time point to each thread
e V =XYZT threads
o V =244=>3.3x10° threads

e Fine-grained parallelization

e Looping over direction each thread must
e Load the neighboring spinor (24 numbers x8)
e Load the color matrix connecting the sites (18 numbers x8)
e Do the computation

e Save the result (24 numbers)

e Arithmetic intensity
e 1320 floating point operations per site
e 1440 bytes per site (single precision)

e 0.92 naive arithmetic intensity
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Mapping the Wilson Dslash to CUDA =

e Assign a single space-time point to each thread
e V =XYZT threads
e V =24%=> 3.3x10° threads

e Fine-grained parallelization

e Looping over direction each thread must

e Load the neighboring spinor (24 numbers x8)

e Load the color matrix connecting the sites (18 numbers x8) Tesla K20X

e Do the computation

e Save the result (24 numbers)
e Arithmetic intensity

e 1320 floating point operations per site

e 1440 bytes per site (single precision)

e 0.92 naive arithmetic intensity
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Krylov Solver Implementation

* Complete solver be on GPU
while (Jri/> €) {
e Transfer b to GPU (reorder) Bk = (ri,rk)/(r-1,re-1)
. k+1 = Ik - PPk
«  Solve Mx=b conjugate P Pep

gradient o = (ri,rv)/(pr+1,Apk+1)
ri+1 = Ik - 0APk+1

) ) Xk+1 = Xk T OPk+1
* Entire algorithms must run on GPUs Kk = k+1

e Transfer x to CPU (reorder)

* Time-critical kernel is the stencil application (SpMV)

* Also require BLAS level-1 type operations
e e.g., AXPY operations: b += ax, NORM operations: c = (b,b)

e Roll our own kernels for kernel fusion and custom precision
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Run-time autotuning AVIDI 2

= Motivation:

— Kernel performance (but not output) strongly dependent on launch
parameters:

= gridDim (trading off with work per thread), blockDim
= blocks/SM (controlled by over-allocating shared memory)

= Design objectives:

— Tune launch parameters for all performance-critical kernels at run-
time as needed (on first launch).

— Cache optimal parameters in memory between launches.
— Optionally cache parameters to disk between runs.
— Preserve correctness.
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Auto-tuned “warp-throttling” nVIDIA

= Motivation: Increase reuse in limited L2 cache.

500
450
400
350
300
250
200
150
100
50
0 -

® BlockDim only
M BlockDim & Blocks/SM

GTX 580 | GTX 680 GTX 680 | GTX580 | GTX 680

Double
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Run-time autotuning: Implementation """

» Parameters stored in a global cache:
static std::map<TuneKey, > tunecache;

= TuneKey is a struct of strings specifying the kernel name,
lattice volume, etc.

is a struct specifying the tune blockDim, gridDim,
etc.

= Kernels get wrapped in a child class of Tunable (next slide)

= tuneLaunch() searches the cache and tunes if not found:

TuneParam tuneLaunch(Tunable &tunable, QudaTune enabled,
QudaVerbosity verbosity);
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S

Run-time autotuning: Usage nVIDIZ

= Before:
myKernelWrapper(a, b, c);

= After:
MyKernelWrapper *k = new MyKernelWrapper(a, b, c);

k->apply(); // <-- automatically tunes if necessary

* Here MyKernelWrapper inherits from Tunable and optionally
overloads various virtual member functions (next slide).

* Wrapping related kernels in a class hierarchy is often useful
anyway, independent of tuning.
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Virtual member functions of Tunable "™

* [nvoke the kernel (tuning if necessary):
— apply()
= Save and restore state before/after tuning:
— preTune(), postTune()
* Advance to next set of trial parameters in the tuning:
— advanceGridDim(), advanceBlockDim(), advanceSharedBytes()
— advanceTuneParam() // simply calls the above by default
* Performance reporting
— flops(), bytes(), perfString()
" etc.
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Kepler Wilson-Dslash Performance =

v—v¥ Half 8 GF
Half &8
A—A Half 12

Single 8 GF
B Single 8
@—@® Single 12

N
al}
Q 500
[
5

V = 243xT K20X Dslash

32
Temporal Extent
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Multi-dimensional lattice decomposition nvioia
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Domain Decomposition

Non-overlapping blocks - simply have to
switch off inter-GPU communication

Preconditioner is a gross approximation

— Use an iterative solver to solve
each domain system

— Require only 10 iterations of
domain solver = 16-bit

— Need to use a flexible solver = GCR

Block-diagonal preconditoner impose A cutoff

Finer Blocks lose long-wavelength/low-energy modes
— keep wavelengths of ~ O(Aqco™?), Aaqcp '~ 1fm

Aniso clover: (as=0.125fm, a:=0.035fm) = 83x32 blocks are ideal
— 483x512 lattice: 83x32 blocks = 3456 GPUs
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Clover Propagator Benchmark on Titan: Strong Scaling, QUDA+Chroma+QDP-JIT(PTX) @

L L N NVIDIA.
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Future Directions - Communication

* Only scratched the surface of domain-
decomposition algorithms

— Disjoint additive

— Overlapping additive

— Alternating boundary conditions
— Random boundary conditions

— Multiplicative Schwarz

— Precision truncation

— Random Schwarz
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Flexibility

parie the a gor1thm to auto tune to both—

: platforms and achieve optlmal load balancmg ‘




Future Directions - Latency

* Global sums are bad
— Global synchronizations
— Performance fluctuations
e New algorithms are required
- S-step CG / BiCGstab, etc.
— E.g., Pipeline CG vs. Naive
* One-sided communication
— MPI-3 expands one-sided communications
— Cray Gemini has hardware support
— Asynchronous algorithms?
« Random Schwarz has exponential convergence

GFLOPS
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GPU Roadmap
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Future Directions - Precision

* Mixed-precision methods have become de facto
— Mixed-precision Krylov solvers
— Low-precision preconditioners

» Exploit closer coupling of precision and algorithm
— Domain decomposition, Adaptive Multigrid
— Hierarchical-precision algorithms
— 128-bit <-> 64-bit <-> 32-bit <-> 16-bit <-> 8-bit

e Low precision is lossy compression

» Low-precision tolerance is fault tolerance
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