
M Clark, NVIDIA
with
M Cheng and R Brower

Adaptive Multigrid Algorithms for GPUs

Tuesday, July 30, 13

Contents

• Adaptive Multigrid
• QUDA Library
• Implementation
• Extremely Preliminary Results
• Future Work

Tuesday, July 30, 13

Adaptive Multigrid

Osborn et al, arXiv:1011.2775

 10

 100

-0.088 -0.086 -0.084 -0.082 -0.08 -0.078 -0.076 -0.074

se
co

nd
s

pe
r s

ol
ve

mass

323x256 anisotropic clover on 1024 BG/P cores

2x

13.9x

24.5x

ms
mlightmphys

mixed precision BiCGStab
mixed precision multigrid

Tuesday, July 30, 13

Hierarchical algorithms for LQCD

• Adaptive Geometric Multigrid
– Based on adaptive smooth aggregation (Brezina et al 2004)
– Low modes have weak-approximation property => locally co-linear
– Apply fixed geometric coarsening (Brannick et al 2007, Babich et al 2010)
– see also Frommer et al 2012

• Inexact Deflation (Lüscher 2007)
– Equivalent to adaptive “unsmoothed” aggregation
– Local coherence = Weak-approximation property
– Uses an additive correction vs. MG’s multiplicative correction

• Residual reduced by a constant per iteration
– Convergence in O(1) iterations, O(N) per iteration
– O(N) total solution cost

Tuesday, July 30, 13

Multigrid V-cycle

• Solve
1. Smooth
2. Compute residual
3. Restrict residual
4. Recurse on coarse problem
5. Prolongate correction
6. Smooth
7. If not converged, goto 1

• Typically use multigrid as a preconditioner for a Krylov method
• For LQCD, we do not know the null space components that need

to be preserved on the coarse grid

Tuesday, July 30, 13

Adaptive Geometric Multigrid
• Adaptively find candidate null-space vectors

– Dynamically learn the null space and use this to define the prolongator
– Algorithm is self learning

• Setup
1. Set solver to be simple smoother
2. Apply current solver to random vector vi = P(D) ηi

3. If convergence good enough, solver setup complete
4. Construct prolongator using fixed coarsening (1 - P R) vk = 0

➡ Typically use 44 geometric blocks
➡ Preserve chirality when coarsening R = γ5 P† γ5 = P†

5. Construct coarse operator (Dc = P† D P)
6. Recurse on coarse problem
7. Set solver to be augmented V-cycle, goto 2

Tuesday, July 30, 13

Motivation

-0.43 -0.42 -0.41 -0.4
mass

100

1000

10000

1e+05

D
ir

ac
 o

p
er

at
o

r
ap

p
li

ca
ti

o
n

s

32
3
96 CG

24
3
64 CG

16
3
64 CG

24
3
64 Eig-CG

16
3
64 Eig-CG

32
3
96 MG-GCR

24
3
64 MG-GCR

16
3
64 MG-GCR

Phys. Rev. Lett. 105, 201602 (2010)

Tuesday, July 30, 13

8

The March of GPUs

0

50

100

150

200

250

300

2007 2008 2009 2010 2011 2012 2013

Peak	
 Memory	
 Bandwidth	

G
By

te
s/
s

M1060

Nehalem	

3	
 GHz

Westmere
3	
 GHz

8-­‐core	

Sandy	
 Bridge

3	
 GHz

Fermi
M2070

Fermi+
M2090

0

300

600

900

1200

1500

2007 2008 2009 2010 2011 2012 2013

Peak	
 Double	
 Precision	
 FP

G
flo

ps
/s

Nehalem
3	
 GHz

Westmere
3	
 GHz

Fermi
M2070

Fermi+
M2090

M1060

8-­‐core
Sandy	
 Bridge

3	
 GHz

NVIDIA	
 GPU	
 (ECC	
 off) x86	
 CPUDouble	
 Precision:	
 NVIDIA	
 GPU Double	
 Precision:	
 x86	
 CPU

Kepler Kepler

Kepler+Kepler+

Tuesday, July 30, 13

Enter QUDA

• “QCD on CUDA” – http://lattice.github.com/quda
• Effort started at Boston University in 2008, now in wide use as the

GPU backend for BQCD, Chroma, CPS, MILC, etc.
• Provides:

— Various solvers for several discretizations, including multi-GPU support and
domain-decomposed (Schwarz) preconditioners

— Additional performance-critical routines needed for gauge-field generation

• Maximize performance
– Exploit physical symmetries
– Mixed-precision methods
– Autotuning for high performance on all CUDA-capable architectures
– Cache blocking

Tuesday, July 30, 13

http://lattice.github.com/quda
http://lattice.github.com/quda

Preliminary, NVIDIA Confidential – not for distribution

Chroma (Lattice QCD) –
High Energy & Nuclear Physics

Chroma
483x512 lattice
Relative Scaling (Application Time)

XK7 (K20X) (BiCGStab)

XK7 (K20X) (DD+GCR)

XE6 (2x Interlagos)

0

2

4

6

8

10

12

14

16

18

0 128 256 384 512 640 768 896 1024 1152 1280

R
el

at
iv

e
Sc

al
in

g

Nodes

3.58x vs. XE6
@1152 nodes

“XK7” node = XK7 (1x K20X + 1x Interlagos)
“XE6” node = XE6 (2x Interlagos)

Tuesday, July 30, 13

The Challenge of Multigrid on GPU

• For competitiveness, MG on GPU is a must
• GPU requirements very different from CPU

– Each thread is slow, but O(10,000) threads per
GPU

• Fine grids run very efficiently
– High parallel throughput problem

• Coarse grids are worst possible scenario
– More cores than degrees of freedom
– Increasingly serial and latency bound
– Little’s law (bytes = bandwidth * latency)
– Amdahl’s law limiter

Tuesday, July 30, 13

Hierarchical algorithms on heterogeneous architectures

Thousands of cores
for parallel processing

Few Cores optimized
for serial work

CPU

GPU

Tuesday, July 30, 13

Design Goals

• Flexibility
– Deploy level i on either CPU or GPU
– All algorithmic flow decisions made at runtime
– Autotune for a given heterogeneous architecture

• (Short term) Provide optimal solvers to legacy apps
– e.g., Chroma, CPS, MILC, etc.

• (Long term) Hierarchical algorithm toolbox
– Little to no barrier to trying new algorithms

Tuesday, July 30, 13

Multigrid and QUDA

• QUDA designed to abstract algorithm from the heterogeneity

LatticeField

ColorSpinorField GaugeField

cudaColorSpinorField cpuColorSpinorField cpuGaugeFieldcudaGaugeField

Tuesday, July 30, 13

Multigrid and QUDA

• QUDA designed to abstract algorithm from the heterogeneity

LatticeField

ColorSpinorField GaugeField

cudaColorSpinorField cpuColorSpinorField cpuGaugeFieldcudaGaugeField

Algorithms

Tuesday, July 30, 13

Multigrid and QUDA

• QUDA designed to abstract algorithm from the heterogeneity

LatticeField

ColorSpinorField GaugeField

cudaColorSpinorField cpuColorSpinorField cpuGaugeFieldcudaGaugeField

Architecture

Tuesday, July 30, 13

Multigrid and QUDA

• While envisaged to be fairly abstract
– Rarely implemented like this in practice
– Product of rapid development by different developers

• Adding multigrid required a lot of work
– Improves maintainability of QUDA across the board

Tuesday, July 30, 13

Writing the same code for two architectures

• Use C++ templates to abstract arch specifics
– Load/store order, caching modifiers, precision, intrinsics

• CPU and GPU kernels almost identical
– Index computation (for loop -> thread id)
– Block reductions (shared memory reduction and / or atomic operations)

 // Applies the grid prolongation operator (coarse to fine)
 template <class FineSpinor, class CoarseSpinor>
 void prolongate(FineSpinor &out, const CoarseSpinor &in,
const int *geo_map, const int *spin_map) {

 for (int x=0; x<out.Volume(); x++) {
 for (int s=0; s<out.Nspin(); s++) {
! for (int c=0; c<out.Ncolor(); c++) {
! out(x, s, c) = in(geo_map[x], spin_map[s], c);
! }
 }
 }

 }

// Applies the grid prolongation operator (coarse to fine)
 template <class FineSpinor, class CoarseSpinor>
 __global__ void prolongate(FineSpinor out, const
CoarseSpinor in, const int *geo_map, const int *spin_map) {

 int x = blockIdx.x*blockDim.x + threadIdx.x;
 for (int s=0; s<out.Nspin(); s++) {
 for (int c=0; c<out.Ncolor(); c++) {
! out(x, s, c) = in(geo_map[x], spin_map[s], c);
 }
 }

 }

CPU GPU
Tuesday, July 30, 13

Current Status

• First multigrid solver working in QUDA as of last Friday
• Some components still on CPU only

• Designed to interoperate with J. Osborn’s qopqdp implementation
– Can verify algorithm correctness, and share null space vectors

GPU CPU
Fine grid operator ✓
Block Orthogonalization ✓
Prolongator ✓ ✓
Restrictor ✓ ✓
Construct coarse gauge field ✓
Coarse grid operator ✓
Vector BLAS ✓ ✓

Tuesday, July 30, 13

Very preliminary two-level results

0

10

20

30

40

2.3

1.7

2.4

1.6

13.6

9.4

23.3
34.3

qcdlib

QUDA

Prolongation Restriction Coarse Grid Smoothing

level 0 243x128
level 1 83x16
D on GPU
Dc, P, R on CPU

Ti
m

e
(s

)

Tuesday, July 30, 13

QUDA as a Hierarchical Algorithm Tool

• Lots of interesting questions to be explored
• Exploit closer coupling of precision and algorithm

– QUDA designed for complete run-time specification of
precision at any point

– Currently supports 64-bit, 32-bit, 16-bit
– Is 128-bit or 8-bit useful at all for hierarchical algorithms?

• Domain-decomposition (DD) and multigrid
– DD approaches likely vital for strong scaling
– DD solvers are effective for high-frequency dampening
– Overlapping domains likely more important at coarser scales

Tuesday, July 30, 13

Summary

• Introduction to multigrid on QUDA
• Basic framework complete, proof of concept
• Still lots of work to do

– Most of the nitty gritty details worked out
– Now time for fun

• Beta testing for end of year
– Chroma Wilson / Wilson-clover support first

• Lessons today are relevant for Exascale preparation

mclark at nvidia dot com

Tuesday, July 30, 13

mailto:mclark@nvidia.com
mailto:mclark@nvidia.com

Backup slides

Tuesday, July 30, 13

Failure of Geometric Multigrid for LQCD

2-d Laplace operator error
with Gauss-Seidel interation

2-d U(1) Wilson-Dirac operator
after 200 Gauss-Seidel iterations

Tuesday, July 30, 13

Failure of Geometric Multigrid for LQCD

2-d Laplace operator error
with Gauss-Seidel interation

2-d U(1) Wilson-Dirac operator
after 200 Gauss-Seidel iterations

Tuesday, July 30, 13

Failure of Geometric Multigrid for LQCD

2-d Laplace operator error
with Gauss-Seidel interation

2-d U(1) Wilson-Dirac operator
after 200 Gauss-Seidel iterations

Tuesday, July 30, 13

The Need for Just-In-Time Compilation

• Tightly-coupled variables should be at the register level
• Dynamic indexing cannot be resolved in register variables

– Array values with indices not known at compile time spill out into
global memory (L1 / L2 / DRAM)

// Applies the grid prolongation operator (coarse to fine)
 template <class FineSpinor, class CoarseSpinor>
 __global__ void prolongate(FineSpinor out, const CoarseSpinor in, const
int *geo_map, const int *spin_map) {

 int x = blockIdx.x*blockDim.x + threadIdx.x;
 for (int s=0; s<out.Nspin(); s++) {
 for (int c=0; c<out.Ncolor(); c++) {
! out(x, s, c) = in(geo_map[x], spin_map[s], c);
 }
 }

 }

Tuesday, July 30, 13

The Need for Just-In-Time Compilation

• Possible solutions
– Template over every possible Nv ⊗ precision for each MG kernel

– One thread per colour matrix row (inefficient for Nv mod 32 ≠ 0)
– Compile necessary kernel at runtime

• JIT support will be coming in CUDA 6.x
– Final performant implementation will likely require this

// Applies the grid prolongation operator (coarse to fine)
 template <class FineSpinor, class CoarseSpinor, int Ncolor, int Nspin>
 __global__ void prolongate(FineSpinor out, const CoarseSpinor in, const
int *geo_map, const int *spin_map) {
 int x = blockIdx.x*blockDim.x + threadIdx.x;
 for (int s=0; s<Nspin; s++) {
 for (int c=0; c<Ncolor; c++) {
! out(x, s, c) = in(geo_map[x], spin_map[s], c);
 }
 }
 }

Tuesday, July 30, 13

Heterogeneous Updating Scheme

CPU

GPU
• Multiplicative MG is

necessarily serial process
– Cannot utilize both GPU and

CPU simultanesouly

Tuesday, July 30, 13

Heterogeneous Updating Scheme

CPU

GPU
• Multiplicative MG is

necessarily serial process
– Cannot utilize both GPU and

CPU simultanesouly

• Additive MG is parallel
– Can utilize both GPU and CPU

simultanesouly

• Additive MG requires accurate
coarse-grid solution

– Not amenable to multi-level
– Only need additive correction

at CPU<->GPU level interface

Tuesday, July 30, 13

The Kepler Architecture
• Kepler K20X

– 2688 processing cores

– 3995 SP Gflops peak (665.5 fma)

– Effective SIMD width of 32 threads (warp)

• Deep memory hierarchy

– As we move away from registers

• Bandwidth decreases

• Latency increases

– Each level imposes a minimum arithmetic
intensity to achieve peak

• Limited on-chip memory

– 65,536 32-bit registers, 255 registers per thread

– 48 KiB shared memory

– 1.5 MiB L2

Device MemoryDevice Memory

Multiprocessor 1

Core
1

Core
2

Core
32

 . . .

Multiprocessor 2

Core
1

Core
2

Core
32

 . . .

Multiprocessor n

Core
1

Core
2

Core
32

 . . .

 . . .

RegistersRegisters RegistersRegisters RegistersRegisters

177 GB/s

 1.345 TB/s

L2 CacheL2 Cache

Sh
Mem

Sh
Mem

 10.76 TB/s

TexTex Sh
Mem

Sh
Mem TexTex Sh

Mem

Sh
Mem TexTexL1 L1 L1

Host MemoryHost Memory

8.0 GB/s per directionPCIe

 280 GB/s

O
n

 c
h

ip
O

ff
 c

h
ip

250 GB/s

500 GB/s

2.5 TB/s

2.5 TB/s

192 192 192192 192 192

Tuesday, July 30, 13

QUDA is community driven
§ Ron Babich (NVIDIA)

§ Kip Barros (LANL)

§ Rich Brower (Boston University)

§ Michael Cheng (Boston University)

§ Justin Foley (University of Utah)

§ Joel Giedt (Rensselaer Polytechnic Institute)

§ Steve Gottlieb (Indiana University)

§ Bálint Joó (Jlab)

§ Hyung-Jin Kim (BNL)

§ Jian Liang (IHEP)

§ Claudio Rebbi (Boston University)

§ Guochun Shi (NCSA -> Google)

§ Alexei Strelchenko (Cyprus Institute -> FNAL)

§ Alejandro Vaquero (Cyprus Institute)

§ Frank Winter (UoE -> Jlab)

§ Yibo Yang (IHEP)

Tuesday, July 30, 13

QUDA Mission Statement

• QUDA is
– a library enabling legacy applications to run on GPUs
– open source so anyone can join the fun
– evolving

• more features
• cleaner, easier to maintain

– a research tool into how to reach the exascale
• Lessons learned are mostly (platform) agnostic
• Domain-specific knowledge is key
• Free from the restrictions of DSLs, e.g., multigrid in QDP

Tuesday, July 30, 13

Mapping the Wilson Dslash to CUDA

• Assign a single space-time point to each thread
• V = XYZT threads

• V = 244 => 3.3x106 threads

• Fine-grained parallelization

• Looping over direction each thread must

• Load the neighboring spinor (24 numbers x8)

• Load the color matrix connecting the sites (18 numbers x8)

• Do the computation

• Save the result (24 numbers)

• Arithmetic intensity

• 1320 floating point operations per site

• 1440 bytes per site (single precision)

• 0.92 naive arithmetic intensity

review basic details of the LQCD application and of NVIDIA
GPU hardware. We then briefly consider some related work
in Section IV before turning to a general description of the
QUDA library in Section V. Our parallelization of the quark
interaction matrix is described in VI, and we present and
discuss our performance data for the parallelized solver in
Section VII. We finish with conclusions and a discussion of
future work in Section VIII.

II. LATTICE QCD
The necessity for a lattice discretized formulation of QCD

arises due to the failure of perturbative approaches commonly
used for calculations in other quantum field theories, such as
electrodynamics. Quarks, the fundamental particles that are at
the heart of QCD, are described by the Dirac operator acting
in the presence of a local SU(3) symmetry. On the lattice,
the Dirac operator becomes a large sparse matrix, M , and the
calculation of quark physics is essentially reduced to many
solutions to systems of linear equations given by

Mx = b. (1)

The form of M on which we focus in this work is the
Sheikholeslami-Wohlert [6] (colloquially known as Wilson-
clover) form, which is a central difference discretization of the
Dirac operator. When acting in a vector space that is the tensor
product of a 4-dimensional discretized Euclidean spacetime,
spin space, and color space it is given by

Mx,x0 = �1
2

4⇤

µ=1

�
P�µ ⇤ Uµ

x �x+µ̂,x0 + P+µ ⇤ Uµ†
x�µ̂ �x�µ̂,x0

⇥

+ (4 + m + Ax)�x,x0

⌅ �1
2
Dx,x0 + (4 + m + Ax)�x,x0 . (2)

Here �x,y is the Kronecker delta; P±µ are 4 ⇥ 4 matrix
projectors in spin space; U is the QCD gauge field which
is a field of special unitary 3⇥ 3 (i.e., SU(3)) matrices acting
in color space that live between the spacetime sites (and hence
are referred to as link matrices); Ax is the 12⇥12 clover matrix
field acting in both spin and color space,1 corresponding to
a first order discretization correction; and m is the quark
mass parameter. The indices x and x0 are spacetime indices
(the spin and color indices have been suppressed for brevity).
This matrix acts on a vector consisting of a complex-valued
12-component color-spinor (or just spinor) for each point in
spacetime. We refer to the complete lattice vector as a spinor
field.

Since M is a large sparse matrix, an iterative Krylov
solver is typically used to obtain solutions to (1), requiring
many repeated evaluations of the sparse matrix-vector product.
The matrix is non-Hermitian, so either Conjugate Gradients
[7] on the normal equations (CGNE or CGNR) is used, or
more commonly, the system is solved directly using a non-
symmetric method, e.g., BiCGstab [8]. Even-odd (also known

1Each clover matrix has a Hermitian block diagonal, anti-Hermitian block
off-diagonal structure, and can be fully described by 72 real numbers.

Fig. 1. The nearest neighbor stencil part of the lattice Dirac operator D,
as defined in (2), in the µ� ⇥ plane. The color-spinor fields are located on
the sites. The SU(3) color matrices Uµ

x are associated with the links. The
nearest neighbor nature of the stencil suggests a natural even-odd (red-black)
coloring for the sites.

as red-black) preconditioning is used to accelerate the solution
finding process, where the nearest neighbor property of the
Dx,x0 matrix (see Fig. 1) is exploited to solve the Schur com-
plement system [9]. This has no effect on the overall efficiency
since the fields are reordered such that all components of
a given parity are contiguous. The quark mass controls the
condition number of the matrix, and hence the convergence of
such iterative solvers. Unfortunately, physical quark masses
correspond to nearly indefinite matrices. Given that current
leading lattice volumes are 323 ⇥ 256, for > 108 degrees of
freedom in total, this represents an extremely computationally
demanding task.

III. GRAPHICS PROCESSING UNITS

In the context of general-purpose computing, a GPU is
effectively an independent parallel processor with its own
locally-attached memory, herein referred to as device memory.
The GPU relies on the host, however, to schedule blocks of
code (or kernels) for execution, as well as for I/O. Data is
exchanged between the GPU and the host via explicit memory
copies, which take place over the PCI-Express bus. The low-
level details of the data transfers, as well as management of
the execution environment, are handled by the GPU device
driver and the runtime system.

It follows that a GPU cluster embodies an inherently het-
erogeneous architecture. Each node consists of one or more
processors (the CPU) that is optimized for serial or moderately
parallel code and attached to a relatively large amount of
memory capable of tens of GB/s of sustained bandwidth. At
the same time, each node incorporates one or more processors
(the GPU) optimized for highly parallel code attached to a
relatively small amount of very fast memory, capable of 150
GB/s or more of sustained bandwidth. The challenge we face is
that these two powerful subsystems are connected by a narrow
communications channel, the PCI-E bus, which sustains at
most 6 GB/s and often less. As a consequence, it is critical
to avoid unnecessary transfers between the GPU and the host.

D
x,x

0 =

Tuesday, July 30, 13

Mapping the Wilson Dslash to CUDA

• Assign a single space-time point to each thread
• V = XYZT threads

• V = 244 => 3.3x106 threads

• Fine-grained parallelization

• Looping over direction each thread must

• Load the neighboring spinor (24 numbers x8)

• Load the color matrix connecting the sites (18 numbers x8)

• Do the computation

• Save the result (24 numbers)

• Arithmetic intensity

• 1320 floating point operations per site

• 1440 bytes per site (single precision)

• 0.92 naive arithmetic intensity

review basic details of the LQCD application and of NVIDIA
GPU hardware. We then briefly consider some related work
in Section IV before turning to a general description of the
QUDA library in Section V. Our parallelization of the quark
interaction matrix is described in VI, and we present and
discuss our performance data for the parallelized solver in
Section VII. We finish with conclusions and a discussion of
future work in Section VIII.

II. LATTICE QCD
The necessity for a lattice discretized formulation of QCD

arises due to the failure of perturbative approaches commonly
used for calculations in other quantum field theories, such as
electrodynamics. Quarks, the fundamental particles that are at
the heart of QCD, are described by the Dirac operator acting
in the presence of a local SU(3) symmetry. On the lattice,
the Dirac operator becomes a large sparse matrix, M , and the
calculation of quark physics is essentially reduced to many
solutions to systems of linear equations given by

Mx = b. (1)

The form of M on which we focus in this work is the
Sheikholeslami-Wohlert [6] (colloquially known as Wilson-
clover) form, which is a central difference discretization of the
Dirac operator. When acting in a vector space that is the tensor
product of a 4-dimensional discretized Euclidean spacetime,
spin space, and color space it is given by

Mx,x0 = �1
2

4⇤

µ=1

�
P�µ ⇤ Uµ

x �x+µ̂,x0 + P+µ ⇤ Uµ†
x�µ̂ �x�µ̂,x0

⇥

+ (4 + m + Ax)�x,x0

⌅ �1
2
Dx,x0 + (4 + m + Ax)�x,x0 . (2)

Here �x,y is the Kronecker delta; P±µ are 4 ⇥ 4 matrix
projectors in spin space; U is the QCD gauge field which
is a field of special unitary 3⇥ 3 (i.e., SU(3)) matrices acting
in color space that live between the spacetime sites (and hence
are referred to as link matrices); Ax is the 12⇥12 clover matrix
field acting in both spin and color space,1 corresponding to
a first order discretization correction; and m is the quark
mass parameter. The indices x and x0 are spacetime indices
(the spin and color indices have been suppressed for brevity).
This matrix acts on a vector consisting of a complex-valued
12-component color-spinor (or just spinor) for each point in
spacetime. We refer to the complete lattice vector as a spinor
field.

Since M is a large sparse matrix, an iterative Krylov
solver is typically used to obtain solutions to (1), requiring
many repeated evaluations of the sparse matrix-vector product.
The matrix is non-Hermitian, so either Conjugate Gradients
[7] on the normal equations (CGNE or CGNR) is used, or
more commonly, the system is solved directly using a non-
symmetric method, e.g., BiCGstab [8]. Even-odd (also known

1Each clover matrix has a Hermitian block diagonal, anti-Hermitian block
off-diagonal structure, and can be fully described by 72 real numbers.

Fig. 1. The nearest neighbor stencil part of the lattice Dirac operator D,
as defined in (2), in the µ� ⇥ plane. The color-spinor fields are located on
the sites. The SU(3) color matrices Uµ

x are associated with the links. The
nearest neighbor nature of the stencil suggests a natural even-odd (red-black)
coloring for the sites.

as red-black) preconditioning is used to accelerate the solution
finding process, where the nearest neighbor property of the
Dx,x0 matrix (see Fig. 1) is exploited to solve the Schur com-
plement system [9]. This has no effect on the overall efficiency
since the fields are reordered such that all components of
a given parity are contiguous. The quark mass controls the
condition number of the matrix, and hence the convergence of
such iterative solvers. Unfortunately, physical quark masses
correspond to nearly indefinite matrices. Given that current
leading lattice volumes are 323 ⇥ 256, for > 108 degrees of
freedom in total, this represents an extremely computationally
demanding task.

III. GRAPHICS PROCESSING UNITS

In the context of general-purpose computing, a GPU is
effectively an independent parallel processor with its own
locally-attached memory, herein referred to as device memory.
The GPU relies on the host, however, to schedule blocks of
code (or kernels) for execution, as well as for I/O. Data is
exchanged between the GPU and the host via explicit memory
copies, which take place over the PCI-Express bus. The low-
level details of the data transfers, as well as management of
the execution environment, are handled by the GPU device
driver and the runtime system.

It follows that a GPU cluster embodies an inherently het-
erogeneous architecture. Each node consists of one or more
processors (the CPU) that is optimized for serial or moderately
parallel code and attached to a relatively large amount of
memory capable of tens of GB/s of sustained bandwidth. At
the same time, each node incorporates one or more processors
(the GPU) optimized for highly parallel code attached to a
relatively small amount of very fast memory, capable of 150
GB/s or more of sustained bandwidth. The challenge we face is
that these two powerful subsystems are connected by a narrow
communications channel, the PCI-E bus, which sustains at
most 6 GB/s and often less. As a consequence, it is critical
to avoid unnecessary transfers between the GPU and the host.

D
x,x

0 =

Tesla K20XTesla K20X

Gflops 3995

GB/s 250

AI 16

bandwidth bound

Tuesday, July 30, 13

Krylov Solver Implementation

• Complete solver must be on GPU

• Transfer b to GPU (reorder)

• Solve Mx=b

• Transfer x to CPU (reorder)

• Entire algorithms must run on GPUs

• Time-critical kernel is the stencil application (SpMV)

• Also require BLAS level-1 type operations

• e.g., AXPY operations: b += ax, NORM operations: c = (b,b)

• Roll our own kernels for kernel fusion and custom precision

while (|rk|> ε) {
βk = (rk,rk)/(rk-1,rk-1)
pk+1 = rk - βkpk

α = (rk,rk)/(pk+1,Apk+1)
rk+1 = rk - αApk+1
xk+1 = xk + αpk+1
k = k+1

}

conjugate
gradient

Tuesday, July 30, 13

Run-time autotuning

§ Motivation:
— Kernel performance (but not output) strongly dependent on launch

parameters:
§ gridDim (trading off with work per thread), blockDim
§ blocks/SM (controlled by over-allocating shared memory)

§ Design objectives:
— Tune launch parameters for all performance-critical kernels at run-

time as needed (on first launch).
— Cache optimal parameters in memory between launches.
— Optionally cache parameters to disk between runs.
— Preserve correctness.

Tuesday, July 30, 13

Auto-tuned “warp-throttling”

§ Motivation: Increase reuse in limited L2 cache.

0

50

100

150

200

250

300

350

400

450

500

GTX 580 GTX 680 GTX 580 GTX 680 GTX 580 GTX 680

Double Single Half

BlockDim only

BlockDim & Blocks/SM

Tuesday, July 30, 13

Run-time autotuning: Implementation

§ Parameters stored in a global cache:
static	
 std::map<TuneKey,	
 TuneParam>	
 tunecache;

§ TuneKey is a struct of strings specifying the kernel name,
lattice volume, etc.

§ TuneParam is a struct specifying the tune blockDim, gridDim,
etc.

§ Kernels get wrapped in a child class of Tunable (next slide)
§ tuneLaunch() searches the cache and tunes if not found:

TuneParam	
 tuneLaunch(Tunable	
 &tunable,	
 QudaTune	
 enabled,	

QudaVerbosity	
 verbosity);

Tuesday, July 30, 13

Run-time autotuning: Usage

§ Before:
myKernelWrapper(a,	
 b,	
 c);

§ After:
MyKernelWrapper	
 *k	
 =	
 new	
 MyKernelWrapper(a,	
 b,	
 c);
k-­‐>apply();	
 	
 //	
 <-­‐-­‐	
 automatically	
 tunes	
 if	
 necessary

§ Here MyKernelWrapper inherits from Tunable and optionally
overloads various virtual member functions (next slide).

§ Wrapping related kernels in a class hierarchy is often useful
anyway, independent of tuning.

Tuesday, July 30, 13

Virtual member functions of Tunable

§ Invoke the kernel (tuning if necessary):
— apply()

§ Save and restore state before/after tuning:
— preTune(), postTune()

§ Advance to next set of trial parameters in the tuning:
— advanceGridDim(), advanceBlockDim(), advanceSharedBytes()
— advanceTuneParam() // simply calls the above by default

§ Performance reporting
— flops(), bytes(), perfString()

§ etc.

Tuesday, July 30, 13

Kepler Wilson-Dslash Performance

8 16 32 64 128
Temporal Extent

200

300

400

500

600

700

800
G

FL
O

PS
Half 8 GF
Half 8
Half 12
Single 8 GF
Single 8
Single 12

V = 243xT K20X Dslash

Tuesday, July 30, 13

Multi-dimensional lattice decompositionMulti GPU Parallelization

face
exchange

wrap
around

face
exchange

wrap
around

Tuesday, July 12, 2011

Tuesday, July 30, 13

• Non-overlapping blocks - simply have to
switch off inter-GPU communication

• Preconditioner is a gross approximation
– Use an iterative solver to solve

each domain system
– Require only 10 iterations of

domain solver ⟹ 16-bit
– Need to use a flexible solver ⟹ GCR

• Block-diagonal preconditoner impose λ cutoff
• Finer Blocks lose long-wavelength/low-energy modes

– keep wavelengths of ~ O(ΛQCD-1), ΛQCD -1 ~ 1fm

• Aniso clover: (as=0.125fm, at=0.035fm) ⟹ 83x32 blocks are ideal
– 483x512 lattice: 83x32 blocks ⟹ 3456 GPUs

Domain Decomposition

Tuesday, July 30, 13

0 512 1024 1536 2048 2560 3072 3584 4096 4608
Titan Nodes (GPUs)

0

50

100

150

200

250

300

350

400

450

TF
LO

PS
BiCGStab: 723x256
DD+GCR: 723x256
BiCGStab: 963x256
DD+GCR: 963x256

Clover Propagator Benchmark on Titan: Strong Scaling, QUDA+Chroma+QDP-JIT(PTX)

B. Joo, F. Winter (JLab), M. Clark (NVIDIA)

Tuesday, July 30, 13

Future Directions - Communication

• Only scratched the surface of domain-
decomposition algorithms

– Disjoint additive
– Overlapping additive
– Alternating boundary conditions
– Random boundary conditions
– Multiplicative Schwarz
– Precision truncation
– Random Schwarz

Tuesday, July 30, 13

Flexibility

• There is lots of variation is what constitutes
heterogenous

• Want the algorithm to auto tune to both
platforms and achieve optimal load balancing

Tuesday, July 30, 13

Future Directions - Latency

• Global sums are bad
– Global synchronizations
– Performance fluctuations

• New algorithms are required
– S-step CG / BiCGstab, etc.
– E.g., Pipeline CG vs. Naive

• One-sided communication
– MPI-3 expands one-sided communications
– Cray Gemini has hardware support
– Asynchronous algorithms?

• Random Schwarz has exponential convergence

4 8 16 32 64
Temporal Extent

80

100

120

140

160

180

G
FL

O
PS

Naive CG
Pipeline CG

Tuesday, July 30, 13

46

GPU Roadmap

2012 20142008 2010

D
P

G
FL

O
PS

 p
er

 W
at

t Kepler

Tesla

Fermi

Maxwell

Volta
Stacked DRAM

Unified Virtual Memory

Dynamic Parallelism

FP64

CUDA

32

16

8

4

2

1

0.5

Tuesday, July 30, 13

Future Directions - Precision

• Mixed-precision methods have become de facto
– Mixed-precision Krylov solvers
– Low-precision preconditioners

• Exploit closer coupling of precision and algorithm
– Domain decomposition, Adaptive Multigrid
– Hierarchical-precision algorithms
– 128-bit <-> 64-bit <-> 32-bit <-> 16-bit <-> 8-bit

•Low precision is lossy compression
• Low-precision tolerance is fault tolerance

Tuesday, July 30, 13

