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Adaptive Multigrid

Osborn et al, arXiv:1011.2775
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Hierarchical algorithms for LQCD

• Adaptive Geometric Multigrid
– Based on adaptive smooth aggregation (Brezina et al 2004)
– Low modes have weak-approximation property => locally co-linear
– Apply fixed geometric coarsening (Brannick et al 2007, Babich et al 2010)
– see also Frommer et al 2012

• Inexact Deflation (Lüscher 2007)
– Equivalent to adaptive “unsmoothed” aggregation
– Local coherence = Weak-approximation property
– Uses an additive correction vs. MG’s multiplicative correction

• Residual reduced by a constant per iteration
– Convergence in O(1) iterations, O(N) per iteration
– O(N) total solution cost
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Multigrid V-cycle

• Solve
1.  Smooth
2.  Compute residual
3.  Restrict residual
4.  Recurse on coarse problem
5.  Prolongate correction
6.  Smooth
7.  If not converged, goto 1

• Typically use multigrid as a preconditioner for a Krylov method 
• For LQCD, we do not know the null space components that need 

to be preserved on the coarse grid
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Adaptive Geometric Multigrid 
• Adaptively find candidate null-space vectors

– Dynamically learn the null space and use this to define the prolongator
– Algorithm is self learning

• Setup
1. Set solver to be simple smoother
2. Apply current solver to random vector  vi = P(D) ηi

3. If convergence good enough, solver setup complete
4. Construct prolongator using fixed coarsening  (1 - P R) vk = 0

➡ Typically use 44 geometric blocks
➡ Preserve chirality when coarsening R = γ5 P† γ5 = P†

5. Construct coarse operator (Dc = P† D P)
6. Recurse on coarse problem
7. Set solver to be augmented V-cycle, goto 2
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Motivation
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The March of GPUs
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Enter QUDA

• “QCD on CUDA” – http://lattice.github.com/quda
• Effort started at Boston University in 2008, now in wide use as the 

GPU backend for BQCD, Chroma, CPS, MILC, etc.
• Provides:

— Various solvers for several discretizations, including multi-GPU support and 
domain-decomposed (Schwarz) preconditioners

— Additional performance-critical routines needed for gauge-field generation

• Maximize performance
– Exploit physical symmetries
– Mixed-precision methods
– Autotuning for high performance on all CUDA-capable architectures
– Cache blocking
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Preliminary, NVIDIA Confidential – not for distribution 

Chroma (Lattice QCD) –  
High Energy & Nuclear Physics 
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The Challenge of Multigrid on GPU

• For competitiveness, MG on GPU is a must
• GPU requirements very different from CPU

– Each thread is slow, but O(10,000) threads per 
GPU

• Fine grids run very efficiently
– High parallel throughput problem

• Coarse grids are worst possible scenario
– More cores than degrees of freedom
– Increasingly serial and latency bound
– Little’s law (bytes = bandwidth * latency)
– Amdahl’s law limiter
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Hierarchical algorithms on heterogeneous architectures

Thousands of cores 
for parallel processing

Few Cores optimized 
for serial work

CPU 

GPU 
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Design Goals

• Flexibility
– Deploy level i on either CPU or GPU
– All algorithmic flow decisions made at runtime
– Autotune for a given heterogeneous architecture

• (Short term) Provide optimal solvers to legacy apps
– e.g., Chroma, CPS, MILC, etc.

• (Long term) Hierarchical algorithm toolbox 
– Little to no barrier to trying new algorithms 
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Multigrid and QUDA

• QUDA designed to abstract algorithm from the heterogeneity

LatticeField

ColorSpinorField GaugeField

cudaColorSpinorField cpuColorSpinorField cpuGaugeFieldcudaGaugeField
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Multigrid and QUDA

• QUDA designed to abstract algorithm from the heterogeneity

LatticeField

ColorSpinorField GaugeField

cudaColorSpinorField cpuColorSpinorField cpuGaugeFieldcudaGaugeField

Algorithms
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Multigrid and QUDA

• QUDA designed to abstract algorithm from the heterogeneity

LatticeField

ColorSpinorField GaugeField

cudaColorSpinorField cpuColorSpinorField cpuGaugeFieldcudaGaugeField

Architecture
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Multigrid and QUDA

• While envisaged to be fairly abstract 
– Rarely implemented like this in practice
– Product of rapid development by different developers

• Adding multigrid required a lot of work
– Improves maintainability of QUDA across the board
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Writing the same code for two architectures

• Use C++ templates to abstract arch specifics
– Load/store order, caching modifiers, precision, intrinsics

• CPU and GPU kernels almost identical
– Index computation (for loop -> thread id)
– Block reductions (shared memory reduction and / or atomic operations)

 // Applies the grid prolongation operator (coarse to fine)
  template <class FineSpinor, class CoarseSpinor>
  void prolongate(FineSpinor &out, const CoarseSpinor &in, 
const int *geo_map, const int *spin_map) {

    for (int x=0; x<out.Volume(); x++) {
      for (int s=0; s<out.Nspin(); s++) {
! for (int c=0; c<out.Ncolor(); c++) {
!   out(x, s, c) = in(geo_map[x], spin_map[s], c);
! }
      }
    }

  }

// Applies the grid prolongation operator (coarse to fine)
  template <class FineSpinor, class CoarseSpinor>
  __global__ void prolongate(FineSpinor out, const 
CoarseSpinor in, const int *geo_map, const int *spin_map) {

    int x = blockIdx.x*blockDim.x + threadIdx.x;
    for (int s=0; s<out.Nspin(); s++) {
      for (int c=0; c<out.Ncolor(); c++) {
! out(x, s, c) = in(geo_map[x], spin_map[s], c);
      }
    }

  }

CPU GPU
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Current Status

• First multigrid solver working in QUDA as of last Friday
• Some components still on CPU only

• Designed to interoperate with J. Osborn’s qopqdp implementation
– Can verify algorithm correctness, and share null space vectors

GPU CPU
Fine grid operator ✓
Block Orthogonalization ✓
Prolongator ✓ ✓
Restrictor ✓ ✓
Construct coarse gauge field ✓
Coarse grid operator ✓
Vector BLAS ✓ ✓
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Very preliminary two-level results
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QUDA as a Hierarchical Algorithm Tool

• Lots of interesting questions to be explored
• Exploit closer coupling of precision and algorithm

– QUDA designed for complete run-time specification of 
precision at any point

– Currently supports 64-bit, 32-bit, 16-bit
– Is 128-bit or 8-bit useful at all for hierarchical algorithms?

• Domain-decomposition (DD) and multigrid
– DD approaches likely vital for strong scaling
– DD solvers are effective for high-frequency dampening
– Overlapping domains likely more important at coarser scales
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Summary

• Introduction to multigrid on QUDA
• Basic framework complete, proof of concept
• Still lots of work to do

– Most of the nitty gritty details worked out
– Now time for fun

• Beta testing for end of year
– Chroma Wilson / Wilson-clover support first

• Lessons today are relevant for Exascale preparation

mclark at nvidia dot com
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Failure of Geometric Multigrid for LQCD

2-d Laplace operator error
with Gauss-Seidel interation 

2-d U(1) Wilson-Dirac operator 
after 200 Gauss-Seidel iterations 
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2-d Laplace operator error
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The Need for Just-In-Time Compilation

• Tightly-coupled variables should be at the register level
• Dynamic indexing cannot be resolved in register variables

– Array values with indices not known at compile time spill out into 
global memory (L1 / L2 / DRAM)

// Applies the grid prolongation operator (coarse to fine)
  template <class FineSpinor, class CoarseSpinor>
  __global__ void prolongate(FineSpinor out, const CoarseSpinor in, const 
int *geo_map, const int *spin_map) {

    int x = blockIdx.x*blockDim.x + threadIdx.x;
    for (int s=0; s<out.Nspin(); s++) {
      for (int c=0; c<out.Ncolor(); c++) {
!    out(x, s, c) = in(geo_map[x], spin_map[s], c);
      }
    }

  }
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The Need for Just-In-Time Compilation

• Possible solutions
– Template over every possible Nv ⊗ precision for each MG kernel

– One thread per colour matrix row (inefficient for Nv mod 32 ≠ 0)
– Compile necessary kernel at runtime

• JIT support will be coming in CUDA 6.x
– Final performant implementation will likely require this

// Applies the grid prolongation operator (coarse to fine)
  template <class FineSpinor, class CoarseSpinor, int Ncolor, int Nspin>
  __global__ void prolongate(FineSpinor out, const CoarseSpinor in, const 
int *geo_map, const int *spin_map) {
    int x = blockIdx.x*blockDim.x + threadIdx.x;
    for (int s=0; s<Nspin; s++) {
      for (int c=0; c<Ncolor; c++) {
!    out(x, s, c) = in(geo_map[x], spin_map[s], c);
      }
    }
  }
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Heterogeneous Updating Scheme

CPU 

GPU 
• Multiplicative MG is 

necessarily serial process
– Cannot utilize both GPU and 

CPU simultanesouly
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Heterogeneous Updating Scheme

CPU 

GPU 
• Multiplicative MG is 

necessarily serial process
– Cannot utilize both GPU and 

CPU simultanesouly

• Additive MG is parallel
– Can utilize both GPU and CPU 

simultanesouly

• Additive MG requires accurate 
coarse-grid solution

– Not amenable to multi-level 
– Only need additive correction 

at CPU<->GPU level interface
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The Kepler Architecture
• Kepler K20X

– 2688 processing cores

– 3995 SP Gflops peak (665.5 fma)

– Effective SIMD width of 32 threads (warp)

• Deep memory hierarchy

– As we move away from registers

• Bandwidth decreases

• Latency increases

– Each level imposes a minimum arithmetic 
intensity to achieve peak

• Limited on-chip memory

– 65,536 32-bit registers, 255 registers per thread

– 48 KiB shared memory

– 1.5 MiB L2
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QUDA is community driven
§ Ron Babich (NVIDIA)

§ Kip Barros (LANL)

§ Rich Brower (Boston University)

§ Michael Cheng (Boston University)

§ Justin Foley (University of Utah)

§ Joel Giedt (Rensselaer Polytechnic Institute)

§ Steve Gottlieb (Indiana University)

§ Bálint Joó (Jlab)

§ Hyung-Jin Kim (BNL)

§ Jian Liang (IHEP)

§ Claudio Rebbi (Boston University)

§ Guochun Shi (NCSA -> Google)

§ Alexei Strelchenko (Cyprus Institute -> FNAL)

§ Alejandro Vaquero (Cyprus Institute)

§ Frank Winter (UoE -> Jlab)

§ Yibo Yang (IHEP)
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QUDA Mission Statement

• QUDA is
– a library enabling legacy applications to run on GPUs
– open source so anyone can join the fun
– evolving

• more features
• cleaner, easier to maintain

– a research tool into how to reach the exascale 
• Lessons learned are mostly (platform) agnostic
• Domain-specific knowledge is key
• Free from the restrictions of DSLs, e.g., multigrid in QDP 
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Mapping the Wilson Dslash to CUDA

• Assign a single space-time point to each thread
• V = XYZT threads

• V = 244 => 3.3x106 threads

• Fine-grained parallelization

• Looping over direction each thread must

• Load the neighboring spinor (24 numbers x8)

• Load the color matrix connecting the sites (18 numbers x8)

• Do the computation

• Save the result (24 numbers)

• Arithmetic intensity

• 1320 floating point operations per site

• 1440 bytes per site (single precision)

• 0.92 naive arithmetic intensity                                       

review basic details of the LQCD application and of NVIDIA
GPU hardware. We then briefly consider some related work
in Section IV before turning to a general description of the
QUDA library in Section V. Our parallelization of the quark
interaction matrix is described in VI, and we present and
discuss our performance data for the parallelized solver in
Section VII. We finish with conclusions and a discussion of
future work in Section VIII.

II. LATTICE QCD
The necessity for a lattice discretized formulation of QCD

arises due to the failure of perturbative approaches commonly
used for calculations in other quantum field theories, such as
electrodynamics. Quarks, the fundamental particles that are at
the heart of QCD, are described by the Dirac operator acting
in the presence of a local SU(3) symmetry. On the lattice,
the Dirac operator becomes a large sparse matrix, M , and the
calculation of quark physics is essentially reduced to many
solutions to systems of linear equations given by

Mx = b. (1)

The form of M on which we focus in this work is the
Sheikholeslami-Wohlert [6] (colloquially known as Wilson-
clover) form, which is a central difference discretization of the
Dirac operator. When acting in a vector space that is the tensor
product of a 4-dimensional discretized Euclidean spacetime,
spin space, and color space it is given by

Mx,x0 = �1
2

4⇤

µ=1

�
P�µ ⇤ Uµ

x �x+µ̂,x0 + P+µ ⇤ Uµ†
x�µ̂ �x�µ̂,x0

⇥

+ (4 + m + Ax)�x,x0

⌅ �1
2
Dx,x0 + (4 + m + Ax)�x,x0 . (2)

Here �x,y is the Kronecker delta; P±µ are 4 ⇥ 4 matrix
projectors in spin space; U is the QCD gauge field which
is a field of special unitary 3⇥ 3 (i.e., SU(3)) matrices acting
in color space that live between the spacetime sites (and hence
are referred to as link matrices); Ax is the 12⇥12 clover matrix
field acting in both spin and color space,1 corresponding to
a first order discretization correction; and m is the quark
mass parameter. The indices x and x0 are spacetime indices
(the spin and color indices have been suppressed for brevity).
This matrix acts on a vector consisting of a complex-valued
12-component color-spinor (or just spinor) for each point in
spacetime. We refer to the complete lattice vector as a spinor
field.

Since M is a large sparse matrix, an iterative Krylov
solver is typically used to obtain solutions to (1), requiring
many repeated evaluations of the sparse matrix-vector product.
The matrix is non-Hermitian, so either Conjugate Gradients
[7] on the normal equations (CGNE or CGNR) is used, or
more commonly, the system is solved directly using a non-
symmetric method, e.g., BiCGstab [8]. Even-odd (also known

1Each clover matrix has a Hermitian block diagonal, anti-Hermitian block
off-diagonal structure, and can be fully described by 72 real numbers.

Fig. 1. The nearest neighbor stencil part of the lattice Dirac operator D,
as defined in (2), in the µ� ⇥ plane. The color-spinor fields are located on
the sites. The SU(3) color matrices Uµ

x are associated with the links. The
nearest neighbor nature of the stencil suggests a natural even-odd (red-black)
coloring for the sites.

as red-black) preconditioning is used to accelerate the solution
finding process, where the nearest neighbor property of the
Dx,x0 matrix (see Fig. 1) is exploited to solve the Schur com-
plement system [9]. This has no effect on the overall efficiency
since the fields are reordered such that all components of
a given parity are contiguous. The quark mass controls the
condition number of the matrix, and hence the convergence of
such iterative solvers. Unfortunately, physical quark masses
correspond to nearly indefinite matrices. Given that current
leading lattice volumes are 323 ⇥ 256, for > 108 degrees of
freedom in total, this represents an extremely computationally
demanding task.

III. GRAPHICS PROCESSING UNITS

In the context of general-purpose computing, a GPU is
effectively an independent parallel processor with its own
locally-attached memory, herein referred to as device memory.
The GPU relies on the host, however, to schedule blocks of
code (or kernels) for execution, as well as for I/O. Data is
exchanged between the GPU and the host via explicit memory
copies, which take place over the PCI-Express bus. The low-
level details of the data transfers, as well as management of
the execution environment, are handled by the GPU device
driver and the runtime system.

It follows that a GPU cluster embodies an inherently het-
erogeneous architecture. Each node consists of one or more
processors (the CPU) that is optimized for serial or moderately
parallel code and attached to a relatively large amount of
memory capable of tens of GB/s of sustained bandwidth. At
the same time, each node incorporates one or more processors
(the GPU) optimized for highly parallel code attached to a
relatively small amount of very fast memory, capable of 150
GB/s or more of sustained bandwidth. The challenge we face is
that these two powerful subsystems are connected by a narrow
communications channel, the PCI-E bus, which sustains at
most 6 GB/s and often less. As a consequence, it is critical
to avoid unnecessary transfers between the GPU and the host.

D
x,x

0 =
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• Looping over direction each thread must

• Load the neighboring spinor (24 numbers x8)

• Load the color matrix connecting the sites (18 numbers x8)

• Do the computation

• Save the result (24 numbers)

• Arithmetic intensity

• 1320 floating point operations per site

• 1440 bytes per site (single precision)

• 0.92 naive arithmetic intensity                                       

review basic details of the LQCD application and of NVIDIA
GPU hardware. We then briefly consider some related work
in Section IV before turning to a general description of the
QUDA library in Section V. Our parallelization of the quark
interaction matrix is described in VI, and we present and
discuss our performance data for the parallelized solver in
Section VII. We finish with conclusions and a discussion of
future work in Section VIII.

II. LATTICE QCD
The necessity for a lattice discretized formulation of QCD

arises due to the failure of perturbative approaches commonly
used for calculations in other quantum field theories, such as
electrodynamics. Quarks, the fundamental particles that are at
the heart of QCD, are described by the Dirac operator acting
in the presence of a local SU(3) symmetry. On the lattice,
the Dirac operator becomes a large sparse matrix, M , and the
calculation of quark physics is essentially reduced to many
solutions to systems of linear equations given by

Mx = b. (1)

The form of M on which we focus in this work is the
Sheikholeslami-Wohlert [6] (colloquially known as Wilson-
clover) form, which is a central difference discretization of the
Dirac operator. When acting in a vector space that is the tensor
product of a 4-dimensional discretized Euclidean spacetime,
spin space, and color space it is given by

Mx,x0 = �1
2

4⇤

µ=1

�
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Dx,x0 + (4 + m + Ax)�x,x0 . (2)

Here �x,y is the Kronecker delta; P±µ are 4 ⇥ 4 matrix
projectors in spin space; U is the QCD gauge field which
is a field of special unitary 3⇥ 3 (i.e., SU(3)) matrices acting
in color space that live between the spacetime sites (and hence
are referred to as link matrices); Ax is the 12⇥12 clover matrix
field acting in both spin and color space,1 corresponding to
a first order discretization correction; and m is the quark
mass parameter. The indices x and x0 are spacetime indices
(the spin and color indices have been suppressed for brevity).
This matrix acts on a vector consisting of a complex-valued
12-component color-spinor (or just spinor) for each point in
spacetime. We refer to the complete lattice vector as a spinor
field.

Since M is a large sparse matrix, an iterative Krylov
solver is typically used to obtain solutions to (1), requiring
many repeated evaluations of the sparse matrix-vector product.
The matrix is non-Hermitian, so either Conjugate Gradients
[7] on the normal equations (CGNE or CGNR) is used, or
more commonly, the system is solved directly using a non-
symmetric method, e.g., BiCGstab [8]. Even-odd (also known

1Each clover matrix has a Hermitian block diagonal, anti-Hermitian block
off-diagonal structure, and can be fully described by 72 real numbers.

Fig. 1. The nearest neighbor stencil part of the lattice Dirac operator D,
as defined in (2), in the µ� ⇥ plane. The color-spinor fields are located on
the sites. The SU(3) color matrices Uµ

x are associated with the links. The
nearest neighbor nature of the stencil suggests a natural even-odd (red-black)
coloring for the sites.

as red-black) preconditioning is used to accelerate the solution
finding process, where the nearest neighbor property of the
Dx,x0 matrix (see Fig. 1) is exploited to solve the Schur com-
plement system [9]. This has no effect on the overall efficiency
since the fields are reordered such that all components of
a given parity are contiguous. The quark mass controls the
condition number of the matrix, and hence the convergence of
such iterative solvers. Unfortunately, physical quark masses
correspond to nearly indefinite matrices. Given that current
leading lattice volumes are 323 ⇥ 256, for > 108 degrees of
freedom in total, this represents an extremely computationally
demanding task.

III. GRAPHICS PROCESSING UNITS

In the context of general-purpose computing, a GPU is
effectively an independent parallel processor with its own
locally-attached memory, herein referred to as device memory.
The GPU relies on the host, however, to schedule blocks of
code (or kernels) for execution, as well as for I/O. Data is
exchanged between the GPU and the host via explicit memory
copies, which take place over the PCI-Express bus. The low-
level details of the data transfers, as well as management of
the execution environment, are handled by the GPU device
driver and the runtime system.

It follows that a GPU cluster embodies an inherently het-
erogeneous architecture. Each node consists of one or more
processors (the CPU) that is optimized for serial or moderately
parallel code and attached to a relatively large amount of
memory capable of tens of GB/s of sustained bandwidth. At
the same time, each node incorporates one or more processors
(the GPU) optimized for highly parallel code attached to a
relatively small amount of very fast memory, capable of 150
GB/s or more of sustained bandwidth. The challenge we face is
that these two powerful subsystems are connected by a narrow
communications channel, the PCI-E bus, which sustains at
most 6 GB/s and often less. As a consequence, it is critical
to avoid unnecessary transfers between the GPU and the host.
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Krylov Solver Implementation

• Complete solver must be on GPU

• Transfer b to GPU  (reorder)

• Solve Mx=b

• Transfer x to CPU  (reorder)

• Entire algorithms must run on GPUs

• Time-critical kernel is the stencil application (SpMV)

• Also require BLAS level-1 type operations

• e.g., AXPY operations: b += ax, NORM operations: c = (b,b)

• Roll our own kernels for kernel fusion and custom precision

while (|rk|> ε) {
βk = (rk,rk)/(rk-1,rk-1)
pk+1 = rk - βkpk

α = (rk,rk)/(pk+1,Apk+1)
rk+1 = rk - αApk+1
xk+1 = xk + αpk+1
k = k+1

}

conjugate 
gradient
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Run-time autotuning

§ Motivation:
— Kernel performance (but not output) strongly dependent on launch 

parameters:
§ gridDim (trading off with work per thread), blockDim
§ blocks/SM (controlled by over-allocating shared memory)

§ Design objectives:
— Tune launch parameters for all performance-critical kernels at run-

time as needed (on first launch).
— Cache optimal parameters in memory between launches.
— Optionally cache parameters to disk between runs.
— Preserve correctness.
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Auto-tuned “warp-throttling”

§ Motivation: Increase reuse in limited L2 cache.
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Run-time autotuning: Implementation

§ Parameters stored in a global cache:
static	
  std::map<TuneKey,	
  TuneParam>	
  tunecache;

§ TuneKey is a struct of strings specifying the kernel name, 
lattice volume, etc.

§ TuneParam is a struct specifying the tune blockDim, gridDim, 
etc.

§ Kernels get wrapped in a child class of Tunable (next slide)
§ tuneLaunch() searches the cache and tunes if not found:

TuneParam	
  tuneLaunch(Tunable	
  &tunable,	
  QudaTune	
  enabled,	
  
QudaVerbosity	
  verbosity);
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Run-time autotuning: Usage

§ Before:
myKernelWrapper(a,	
  b,	
  c);

§ After:
MyKernelWrapper	
  *k	
  =	
  new	
  MyKernelWrapper(a,	
  b,	
  c);
k-­‐>apply();	
  	
  //	
  <-­‐-­‐	
  automatically	
  tunes	
  if	
  necessary

§ Here MyKernelWrapper inherits from Tunable and optionally 
overloads various virtual member functions (next slide).

§ Wrapping related kernels in a class hierarchy is often useful 
anyway, independent of tuning.
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Virtual member functions of Tunable

§ Invoke the kernel (tuning if necessary):
— apply()

§ Save and restore state before/after tuning:
— preTune(), postTune()

§ Advance to next set of trial parameters in the tuning:
— advanceGridDim(), advanceBlockDim(), advanceSharedBytes()
— advanceTuneParam()  // simply calls the above by default

§ Performance reporting
— flops(), bytes(), perfString()

§ etc.
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Kepler Wilson-Dslash Performance
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Multi-dimensional lattice decompositionMulti GPU Parallelization

face
exchange

wrap
around

face
exchange

wrap
around

Tuesday, July 12, 2011
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• Non-overlapping blocks - simply have to 
switch off inter-GPU communication

• Preconditioner is a gross approximation
– Use an iterative solver to solve 

each domain system
– Require only 10 iterations of 

domain solver  ⟹ 16-bit  
– Need to use a flexible solver ⟹  GCR

• Block-diagonal preconditoner impose λ cutoff
• Finer Blocks lose long-wavelength/low-energy modes

– keep wavelengths of ~ O(ΛQCD-1),   ΛQCD -1 ~ 1fm 

• Aniso clover:  (as=0.125fm, at=0.035fm)  ⟹   83x32 blocks are ideal
– 483x512 lattice: 83x32 blocks  ⟹   3456 GPUs

Domain Decomposition
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Future Directions - Communication

• Only scratched the surface of domain-
decomposition algorithms

– Disjoint additive
– Overlapping additive
– Alternating boundary conditions
– Random boundary conditions
– Multiplicative Schwarz
– Precision truncation
– Random Schwarz
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Flexibility

• There is lots of variation is what constitutes 
heterogenous

• Want the algorithm to auto tune to both 
platforms and achieve optimal load balancing
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Future Directions - Latency

• Global sums are bad
– Global synchronizations
– Performance fluctuations

• New algorithms are required
– S-step CG / BiCGstab, etc.
– E.g., Pipeline CG vs. Naive

• One-sided communication
– MPI-3 expands one-sided communications
– Cray Gemini has hardware support
– Asynchronous algorithms?

• Random Schwarz has exponential convergence
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Future Directions - Precision

• Mixed-precision methods have become de facto
– Mixed-precision Krylov solvers
– Low-precision preconditioners

• Exploit closer coupling of precision and algorithm
– Domain decomposition, Adaptive Multigrid
– Hierarchical-precision algorithms
– 128-bit <-> 64-bit <-> 32-bit <-> 16-bit <-> 8-bit

•Low precision is lossy compression
• Low-precision tolerance is fault tolerance
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