
Lattice Simulations using OpenACC compilers

Pushan Majumdar

(Indian Association for the Cultivation of Science, Kolkata)

OpenACC is a programming standard for parallel computing de-
veloped by Cray, CAPS, Nvidia and PGI. The standard is designed
to simplify parallel programming of heterogeneous CPU/GPU
systems. from Wikipedia

The OpenACC Application Program Interface describes a collec-
tion of compiler directives to specify loops and regions of code in
standard C, C++ and Fortran to be offloaded from a host CPU
to an attached accelerator, providing portability across operating
systems, host CPUs and accelerators. from openacc.org

The directives and programming model defined in this docu-
ment allow programmers to create high-level host+accelerator
programs without the need to explicitly initialize the accelerator,
manage data or program transfers between the host and accel-
erator, or initiate accelerator startup and shutdown.

from openacc.org

Programs I have had some experience with :

1. Staggered fermions with wilson gauge action on

(a) single GPU – in some detail

(b) multi GPU – preliminary

2. Wilson fermions with Wilson gauge action on

single GPU – preliminary

Main bottlenecks is slow data movement between CPU & GPU.

Speed is about 5 GB/s.

Impossible to avoid CPU completely as I/O , if-then clause is

evaluated on CPU.

BLAS functions are launched from CPU and MPI calls (at least

for Fermi GPUs) are launched from CPUs.

Single GPU code

subroutine congrad(nitcg)

. . . All kinds of definitions and declarations . . .

!$ACC data copy(nitcg,alpha,betad,betan)

!$ACC+ copyin(nx,iup,idn,u,r)

!$ACC+ copyout(x,y)

!$ACC+ create(ud,ap,atap,p)

*

call linkc_acc

!!$OMP parallel do default(shared)

!$ACC parallel loop collapse(2) reduction(+:betan) present(p,r,x)

do l = 1, mvd2

do ic=1,nc

p(l,ic) = r(l,ic) ; x(l,ic) = (0.,0.)

betan=betan+conjg(r(l,ic))*r(l,ic)

end do

end do

! betan=real(zdotc(mv3d2,r,1,r,1))

!$ACC update host(betan)

if (betan.lt.delit) go to 30

!$ACC parallel present(beta,betan,betad,alphan)

beta=betan/betad ; betad=betan ; alphan=betan

!$ACC end parallel

do nx = 1, nitrc Main loop of conjugate gradient begins

nitcg ← nitcg+1 ; ap = 0

call fmv(0,mvd2,ap,p) →(Matrix-vector multiplication)

alphad=〈ap,ap〉 + 〈p,p〉 ; alpha=alphan/alphad

atap ← p ; x ← x + alpha * p

call fmtv(atap,ap) →(Matrix-vector multiplication)

r ← r - alpha * atap

betan=〈r, r〉
!$ACC update host(betan) Exit condition evaluated on CPU

if (betan .lt. delit) go to 30

beta=betan/betad ; betad=betan ; alphan=betan

p ← r + beta * p

end do Main loop of conjugate gradient ends
30 continue

*

y = 0 Solution on the second half lattice
call fmv(mvd2,mv,y,x) →(Matrix-vector multiplication)

*

!$ACC end data

return

Matrix-vector multiplication routine

subroutine fmv(noff,nsz,v,w)

. . . All kinds of definitions and declarations . . .

!!$OMP parallel do default(shared)

!!$OMP+ private(nnu,px1,px2,px3,px4,px5,px6)

!!$OMP^ private(v1,v2,v3)

!$ACC parallel loop present(u,ud,v,w,iup,idn)

!$ACC+ private(nnu,px1,px2,px3,px4,px5,px6,v1,v2,v3)

!$ACC+ vector_length(32)

do l = noff+1, noff+mvd2
...

Routine identical to CPU version
...

enddo

return

32^3 x 8 lattice

Staggered fermions with

even−odd decomposition

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 100 200 300 400 500 600 700 800 900 1000 1100

T
im

e
 i
n
 s

e
c
o
n
d
s

Number of threads

Cray XE6 with cray compiler

Cluster with intel fortran compiler

X2090 GPU with Cray OpenACC compiler

Multi-GPU code
...

ap_loc ← 0

!$ACC parallel loop present(u,ud,ap_loc,p,iup,idn)

do l = base+1, base+nvd2

v1 = ap_loc(1,l-base)
...

Lines identical to scalar version
...

ap_loc(3,l-base) = v3

enddo

!$ACC update host(ap_loc)

call MPI_ALLGATHER(ap_loc,3*nvd2,MPI_DOUBLE_COMPLEX,

+ ap,3*nvd2,MPI_DOUBLE_COMPLEX,MPI_COMM_WORLD,ierr)

!$ACC update device (ap)

Worry about async compiler options.

Summary

• Coding effort is only marginally higher than OpenMP. Almost

each OpenMP directive can be replaced with a OpenACC

directive. Only additional directive is the creation of a data

region with a list of variables (scalars + arrays) so that the

compiler knows which variables to copy to the GPU and back

again.

One data structure I haven’t explored is deviceptr.

• Performance of single GPU staggered fermion code is roughly

equivalent to 128 cores of cluster with QDR infiniband in-

terconnect.

• Performance of single GPU Wilson fermion code is roughly

equivalent to 96 cores. About 30% difference in performance

between hand coded CUDA and OpenACC code.

• GPU with 6GB memory fits in a 324 Wilson fermion lattice

or a 10× 403 staggered fermion lattice.

• Real gain comes only when the whole conjugate gradient

routine is on the GPU.

• Extremely useful if one does not have access to conventional

supercomputers.

• For Multi-GPU programs MPI calls on the Fermi GPUs can

only be made from the CPU so every MPI call involves a data

transfer from the GPU to CPU and back. Each such copy

adds a significant (∼ 15%) overhead to the runtime. For

Kepler GPUs the construct host data use device cuts this

down to a certain extent.

• Further performance gains can be obtained by using mixed-

precision routines and improved storage schemes.

Acknowlegdments

ILGTI-TIFR for funding the GPU portion of the Cray on which

these studies were carried out. IACS for funding the rest of the

Cray without which the GPU portion wouldn’t run.

Cray India team for help at various stages during the development

of the OpenACC codes.

