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OpenACC is a programming standard for parallel computing de-
veloped by Cray, CAPS, Nvidia and PGI. The standard is designed
to simplify parallel programming of heterogeneous CPU/GPU
systems. from Wikipedia

The OpenACC Application Program Interface describes a collec-
tion of compiler directives to specify loops and regions of code in
standard C, C++ and Fortran to be offloaded from a host CPU
to an attached accelerator, providing portability across operating
systems, host CPUs and accelerators. from openacc.org

The directives and programming model defined in this docu-
ment allow programmers to create high-level host+accelerator
programs without the need to explicitly initialize the accelerator,
manage data or program transfers between the host and accel-
erator, or initiate accelerator startup and shutdown.

from openacc.org



Programs I have had some experience with :

1. Staggered fermions with wilson gauge action on

(a) single GPU – in some detail

(b) multi GPU – preliminary

2. Wilson fermions with Wilson gauge action on

single GPU – preliminary

Main bottlenecks is slow data movement between CPU & GPU.

Speed is about 5 GB/s.

Impossible to avoid CPU completely as I/O , if-then clause is

evaluated on CPU.

BLAS functions are launched from CPU and MPI calls (at least

for Fermi GPUs) are launched from CPUs.



Single GPU code

subroutine congrad(nitcg)

. . . All kinds of definitions and declarations . . .

!$ACC data copy(nitcg,alpha,betad,betan)

!$ACC+ copyin(nx,iup,idn,u,r)

!$ACC+ copyout(x,y)

!$ACC+ create(ud,ap,atap,p)

*

call linkc_acc

!!$OMP parallel do default(shared)

!$ACC parallel loop collapse(2) reduction(+:betan) present(p,r,x)

do l = 1, mvd2

do ic=1,nc

p(l,ic) = r(l,ic) ; x(l,ic) = (0.,0.)

betan=betan+conjg(r(l,ic))*r(l,ic)

end do

end do



! betan=real(zdotc(mv3d2,r,1,r,1))

!$ACC update host(betan)

if (betan.lt.delit) go to 30

!$ACC parallel present(beta,betan,betad,alphan)

beta=betan/betad ; betad=betan ; alphan=betan

!$ACC end parallel

do nx = 1, nitrc Main loop of conjugate gradient begins

nitcg ← nitcg+1 ; ap = 0

call fmv(0,mvd2,ap,p) →(Matrix-vector multiplication)

alphad=〈ap,ap〉 + 〈p,p〉 ; alpha=alphan/alphad

atap ← p ; x ← x + alpha * p



call fmtv(atap,ap) →(Matrix-vector multiplication)

r ← r - alpha * atap

betan=〈r, r〉
!$ACC update host(betan) Exit condition evaluated on CPU

if (betan .lt. delit) go to 30

beta=betan/betad ; betad=betan ; alphan=betan

p ← r + beta * p

end do Main loop of conjugate gradient ends
30 continue

*

y = 0 Solution on the second half lattice
call fmv(mvd2,mv,y,x) →(Matrix-vector multiplication)

*

!$ACC end data

return



Matrix-vector multiplication routine

subroutine fmv(noff,nsz,v,w)

. . . All kinds of definitions and declarations . . .

!!$OMP parallel do default(shared)

!!$OMP+ private(nnu,px1,px2,px3,px4,px5,px6)

!!$OMP^ private(v1,v2,v3)

!$ACC parallel loop present(u,ud,v,w,iup,idn)

!$ACC+ private(nnu,px1,px2,px3,px4,px5,px6,v1,v2,v3)

!$ACC+ vector_length(32)

do l = noff+1, noff+mvd2
...

Routine identical to CPU version
...

enddo

return



32^3 x 8 lattice

Staggered fermions with 

even−odd decomposition
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Multi-GPU code
...

ap_loc ← 0

!$ACC parallel loop present(u,ud,ap_loc,p,iup,idn)

do l = base+1, base+nvd2

v1 = ap_loc(1,l-base)
...

Lines identical to scalar version
...

ap_loc(3,l-base) = v3

enddo

!$ACC update host(ap_loc)

call MPI_ALLGATHER(ap_loc,3*nvd2,MPI_DOUBLE_COMPLEX,

+ ap,3*nvd2,MPI_DOUBLE_COMPLEX,MPI_COMM_WORLD,ierr)

!$ACC update device (ap)

Worry about async compiler options.



Summary

• Coding effort is only marginally higher than OpenMP. Almost

each OpenMP directive can be replaced with a OpenACC

directive. Only additional directive is the creation of a data

region with a list of variables (scalars + arrays) so that the

compiler knows which variables to copy to the GPU and back

again.

One data structure I haven’t explored is deviceptr.

• Performance of single GPU staggered fermion code is roughly

equivalent to 128 cores of cluster with QDR infiniband in-

terconnect.

• Performance of single GPU Wilson fermion code is roughly

equivalent to 96 cores. About 30% difference in performance

between hand coded CUDA and OpenACC code.



• GPU with 6GB memory fits in a 324 Wilson fermion lattice

or a 10× 403 staggered fermion lattice.

• Real gain comes only when the whole conjugate gradient

routine is on the GPU.

• Extremely useful if one does not have access to conventional

supercomputers.

• For Multi-GPU programs MPI calls on the Fermi GPUs can

only be made from the CPU so every MPI call involves a data

transfer from the GPU to CPU and back. Each such copy

adds a significant (∼ 15%) overhead to the runtime. For



Kepler GPUs the construct host data use device cuts this

down to a certain extent.

• Further performance gains can be obtained by using mixed-

precision routines and improved storage schemes.
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