Towards Continuum Limit for the QCD Critical Point

Saumen Datta, Rajiv V. Gavai and Sourendu Gupta T. I. F. R., Mumbai, India

Non-zero Temperature and Density : Session 5 A 31st International Symposium on Lattice Field Theory Mainz, Germany

- QCD Critical Point in the temperature (T)-baryon density (μ_B) plane is a major focal theme of many experiments, such as the beam energy scan at RHIC or the upcoming FAIR (Germany) and NICA (Russia).
- Many models suggest its existence (e.g., Asakawa-Yazaki, NPA 1989) but the best and most reliable way to locate it, if it exists, maybe Lattice.

- QCD Critical Point in the temperature (T)-baryon density (μ_B) plane is a major focal theme of many experiments, such as the beam energy scan at RHIC or the upcoming FAIR (Germany) and NICA (Russia).
- Many models suggest its existence (e.g., Asakawa-Yazaki, NPA 1989) but the best and most reliable way to locate it, if it exists, maybe Lattice.
- Beset with strong challenges : Its investigation needs

— 2 light and 1 moderately heavy flavour with good control on $U_{\!A}(1)\!$ - anomaly.

— method(s) to handle the complex Fermion Determinant for nonzero μ_B .

- QCD Critical Point in the temperature (T)-baryon density (μ_B) plane is a major focal theme of many experiments, such as the beam energy scan at RHIC or the upcoming FAIR (Germany) and NICA (Russia).
- Many models suggest its existence (e.g., Asakawa-Yazaki, NPA 1989) but the best and most reliable way to locate it, if it exists, maybe Lattice.
- Beset with strong challenges : Its investigation needs

— 2 light and 1 moderately heavy flavour with good control on $U_{\!A}(1)\!$ - anomaly.

— method(s) to handle the complex Fermion Determinant for nonzero μ_B .

• Mostly staggered quarks used in the present-day simulations. Broken flavour and spin symmetry on lattice: 2 + 1 flavours ? Anomaly ??

- QCD Critical Point in the temperature (T)-baryon density (μ_B) plane is a major focal theme of many experiments, such as the beam energy scan at RHIC or the upcoming FAIR (Germany) and NICA (Russia).
- Many models suggest its existence (e.g., Asakawa-Yazaki, NPA 1989) but the best and most reliable way to locate it, if it exists, maybe Lattice.
- Beset with strong challenges : Its investigation needs

— 2 light and 1 moderately heavy flavour with good control on $U_{\!A}(1)\!$ - anomaly.

— method(s) to handle the complex Fermion Determinant for nonzero μ_B .

 Mostly staggered quarks used in the present-day simulations. Broken flavour and spin symmetry on lattice: 2 + 1 flavours ? Anomaly ??
 — Overlap/DWF possible now (Gavai-Sharma, PLB 2012).

Lattice Approaches for $\mu \neq 0$

Several approaches proposed in the past two decades or more : None as satisfactory as the usual $T \neq 0$ simulations.

Lattice Approaches for $\mu \neq 0$

Several approaches proposed in the past two decades or more : None as satisfactory as the usual $T \neq 0$ simulations.

- A partial list :
 - Two parameter Re-weighting (Z. Fodor & S. Katz, JHEP 0203 (2002) 014).
 - Imaginary Chemical Potential (Ph. de Frocrand & O. Philipsen, NP B642 (2002) 290; M.-P. Lombardo & M.
 D'Elia PR D67 (2003) 014505).
 - Taylor Expansion (C. Allton et al., PR D68 (2003) 014507; R.V. Gavai and S. Gupta, PR D68 (2003) 034506).
 - Canonical Ensemble (К. -F. Liu, IJMP B16 (2002) 2017, S. Kratochvila and P. de Forcrand, Pos LAT2005 (2006) 167.)
 - Complex Langevin (G. Aarts and I. O. Stamatescu, arXiv:0809.5227 and its references for earlier work).

Lattice Approaches for $\mu \neq 0$

Several approaches proposed in the past two decades or more : None as satisfactory as the usual $T \neq 0$ simulations.

- A partial list :
 - Two parameter Re-weighting (Z. Fodor & S. Katz, JHEP 0203 (2002) 014).
 - Imaginary Chemical Potential (Ph. de Frocrand & O. Philipsen, NP B642 (2002) 290; M.-P. Lombardo & M.
 D'Elia PR D67 (2003) 014505).
 - Taylor Expansion (C. Allton et al., PR D68 (2003) 014507; R.V. Gavai and S. Gupta, PR D68 (2003) 034506).
 - Canonical Ensemble (К. -F. Liu, IJMP B16 (2002) 2017, S. Kratochvila and P. de Forcrand, Pos LAT2005 (2006) 167.)
 - Complex Langevin (G. Aarts and I. O. Stamatescu, arXiv:0809.5227 and its references for earlier work).
- Why Taylor series expansion? i) Ease of taking continuum and thermodynamic limit & ii) Better control of systematic errors.

Detail of Expansion

Standard definitions yield various number densities and susceptibilities :

$$n_i = \frac{T}{V} \frac{\partial \ln \mathcal{Z}}{\partial \mu_i}$$
 and $\chi_{ij} = \frac{T}{V} \frac{\partial^2 \ln \mathcal{Z}}{\partial \mu_i \partial \mu_j}$

These are also useful by themselves both theoretically and for Heavy Ion Physics (Flavour correlations, $\lambda_s \dots$) (S. Datta's talk)

Denoting higher order susceptibilities by χ_{n_u,n_d} , the pressure P has the expansion in $\mu:$

$$\frac{\Delta P}{T^4} \equiv \frac{P(\mu, T)}{T^4} - \frac{P(0, T)}{T^4} = \sum_{n_u, n_d} \chi_{n_u, n_d} \frac{1}{n_u!} \left(\frac{\mu_u}{T}\right)^{n_u} \frac{1}{n_d!} \left(\frac{\mu_d}{T}\right)^{n_d} \tag{1}$$

Detail of Expansion

Standard definitions yield various number densities and susceptibilities :

$$n_i = \frac{T}{V} \frac{\partial \ln \mathcal{Z}}{\partial \mu_i}$$
 and $\chi_{ij} = \frac{T}{V} \frac{\partial^2 \ln \mathcal{Z}}{\partial \mu_i \partial \mu_j}$

These are also useful by themselves both theoretically and for Heavy Ion Physics (Flavour correlations, $\lambda_s \dots$) (S. Datta's talk)

Denoting higher order susceptibilities by χ_{n_u,n_d} , the pressure P has the expansion in $\mu:$

$$\frac{\Delta P}{T^4} \equiv \frac{P(\mu, T)}{T^4} - \frac{P(0, T)}{T^4} = \sum_{n_u, n_d} \chi_{n_u, n_d} \frac{1}{n_u!} \left(\frac{\mu_u}{T}\right)^{n_u} \frac{1}{n_d!} \left(\frac{\mu_d}{T}\right)^{n_d} \tag{1}$$

- From this expansion, a series for baryonic susceptibility can be constructed. Its radius of convergence gives the nearest critical point.
- Successive estimates for the radius of convergence obtained from the coefficients of the series using $\sqrt{\frac{n(n+1)\chi_B^{(n+1)}}{\chi_B^{(n+3)}T^2}}$ or $\left(n!\frac{\chi_B^{(2)}}{\chi_B^{(n+2)}T^2}\right)^{1/n}$. We use both definitions and terms up to 8th order in μ .
- All coefficients of the series must be POSITIVE for the critical point to be at real μ , and thus physical.
- We (Gavai-Gupta '05, '09) use up to 8th order. Bielefeld-RBC so far has up to 4th-6th order.
- 10th & even 12th order may be possible : Ideas to extend to higher orders are emerging (Gavai-Sharma PRD 2012 & PRD 2010) which save up to 60 % computer time.

- From this expansion, a series for baryonic susceptibility can be constructed. Its radius of convergence gives the nearest critical point.
- Successive estimates for the radius of convergence obtained from the coefficients of the series using $\sqrt{\frac{n(n+1)\chi_B^{(n+1)}}{\chi_B^{(n+3)}T^2}}$ or $\left(n!\frac{\chi_B^{(2)}}{\chi_B^{(n+2)}T^2}\right)^{1/n}$. We use both definitions and terms up to 8th order in μ .
- All coefficients of the series must be POSITIVE for the critical point to be at real μ , and thus physical.
- We (Gavai-Gupta '05, '09) use up to 8th order. Bielefeld-RBC so far has up to 4th-6th order.
- 10th & even 12th order may be possible : Ideas to extend to higher orders are emerging (Gavai-Sharma PRD 2012 & PRD 2010) which save up to 60 % computer time.

- From this expansion, a series for baryonic susceptibility can be constructed. Its radius of convergence gives the nearest critical point.
- Successive estimates for the radius of convergence obtained from the coefficients of the series using $\sqrt{\frac{n(n+1)\chi_B^{(n+1)}}{\chi_B^{(n+3)}T^2}}$ or $\left(n!\frac{\chi_B^{(2)}}{\chi_B^{(n+2)}T^2}\right)^{1/n}$. We use both definitions and terms up to 8th order in μ .
- All coefficients of the series must be POSITIVE for the critical point to be at real μ , and thus physical.
- We (Gavai-Gupta '05, '09) use up to 8th order. Bielefeld-RBC so far has up to 4th-6th order.
- 10th & even 12th order may be possible : Ideas to extend to higher orders are emerging (Gavai-Sharma PRD 2012 & PRD 2010) which save up to 60 % computer time.

Our Simulations & Results

- Staggered fermions with $N_f = 2$ of $m/T_c = 0.1$; R-algorithm used.
- $m_{\pi}/m_{\rho} = 0.31 \pm 0.01$; Kept the same as $a \to 0$ (on all N_t).
- Earlier Lattice : 4 $\times N_s^3$, $N_s = 8$, 10, 12, 16, 24 (Gavai-Gupta, PRD 2005) Finer Lattice : 6 $\times N_s^3$, $N_s = 12$, 18, 24 (Gavai-Gupta, PRD 2009).

Our Simulations & Results

- Staggered fermions with $N_f = 2$ of $m/T_c = 0.1$; R-algorithm used.
- $m_{\pi}/m_{\rho} = 0.31 \pm 0.01$; Kept the same as $a \to 0$ (on all N_t).
- Earlier Lattice : $4 \times N_s^3$, $N_s = 8$, 10, 12, 16, 24 (Gavai-Gupta, PRD 2005) Finer Lattice : $6 \times N_s^3$, $N_s = 12$, 18, 24 (Gavai-Gupta, PRD 2009).
- $\frac{T^E}{T_c} = 0.94 \pm 0.01$, and $\frac{\mu_B^E}{T^E} = 1.8 \pm 0.1$ for finer lattice: Our earlier coarser lattice result was $\mu_B^E/T^E = 1.3 \pm 0.3$. Infinite volume result: \downarrow to 1.1(1)

Our Simulations & Results

- Staggered fermions with $N_f = 2$ of $m/T_c = 0.1$; R-algorithm used.
- $m_{\pi}/m_{\rho} = 0.31 \pm 0.01$; Kept the same as $a \rightarrow 0$ (on all N_t).
- Earlier Lattice : 4 × N_s^3 , $N_s = 8$, 10, 12, 16, 24 (Gavai-Gupta, PRD 2005) Finer Lattice : 6 × N_s^3 , $N_s = 12$, 18, 24 (Gavai-Gupta, PRD 2009).
- $\frac{T^E}{T_c} = 0.94 \pm 0.01$, and $\frac{\mu_B^E}{T^E} = 1.8 \pm 0.1$ for finer lattice: Our earlier coarser lattice result was $\mu_B^E/T^E = 1.3 \pm 0.3$. Infinite volume result: \downarrow to 1.1(1)
- T_c defined by the peak of Polyakov loop susceptibility.
- Even finer Lattice : 8 $\times 32^3$ This Talk Aspect ratio, N_s/N_t , maintained four to reduce finite volume effects.

Critical Point : Story thus far

♠ $N_f = 2$ (magenta) and 2+1 (blue) (Fodor-Katz, JHEP '04). $\heartsuit N_t = 4$ Circles (GG '05 & Fodor-Katz JHEP '02), $N_t = 6$ Box (GG '09).

Computing The Susceptibilities

All susceptibilities can be written as traces of products of M^{-1} and various derivatives of M.

At leading order,

$$\chi_{20} = \left(\frac{T}{V}\right) \left[\langle \mathcal{O}_2 + \mathcal{O}_{11} \rangle \right], \qquad \chi_{11} = \left(\frac{T}{V}\right) \left[\langle \mathcal{O}_{11} \rangle \right]$$

Here $\mathcal{O}_2 = \text{Tr } M^{-1}M'' - \text{Tr } M^{-1}M'M^{-1}M'$, and $\mathcal{O}_{11} = (\text{Tr } M^{-1}M')^2$, and the traces are estimated by a stochastic method (Gottlieb et al., PRL '87):

Tr $A = \sum_{i=1}^{N_v} R_i^{\dagger} A R_i / 2N_v$, and $(\text{Tr } A)^2 = 2 \sum_{i>j=1}^{L} (\text{Tr } A)_i (\text{Tr } A)_j / L(L-1)$, where R_i is a complex vector from a set of N_v subdivided in L independent sets.

Lattice 2013, Mainz, Germany, July 31, 2013

Computing The Susceptibilities

All susceptibilities can be written as traces of products of M^{-1} and various derivatives of M.

At leading order,

$$\chi_{20} = \left(\frac{T}{V}\right) \left[\langle \mathcal{O}_2 + \mathcal{O}_{11} \rangle \right], \qquad \chi_{11} = \left(\frac{T}{V}\right) \left[\langle \mathcal{O}_{11} \rangle \right]$$

Here $\mathcal{O}_2 = \text{Tr } M^{-1}M'' - \text{Tr } M^{-1}M'M^{-1}M'$, and $\mathcal{O}_{11} = (\text{Tr } M^{-1}M')^2$, and the traces are estimated by a stochastic method (Gottlieb et al., PRL '87):

Tr $A = \sum_{i=1}^{N_v} R_i^{\dagger} A R_i / 2N_v$, and $(\text{Tr } A)^2 = 2 \sum_{i>j=1}^{L} (\text{Tr } A)_i (\text{Tr } A)_j / L(L-1)$, where R_i is a complex vector from a set of N_v subdivided in L independent sets.

Lattice 2013, Mainz, Germany, July 31, 2013

χ_2 for $N_t = 8$, 6, and 4 lattices

• Our $N_t = 8$ (Lattice 2013) and $N_t = 6$ (GG, PRD '09) results agree. \heartsuit Our estimate of $\beta_c(N_t = 8)$ agrees with Gottlieb et al. PR D47,1993.

4th **Order Susceptibilities for** $N_t = 8$ **lattice**

♠ ~200 configurations separated by a a few autocorrelation lengths employed.
 ♠ 2000 Gaussian random vectors employed at each point.

Radius of Convergence result

 \heartsuit As earlier for smaller N_t , constancy of the ratios \rightsquigarrow (T_E, μ_E) for $N_t = 8$ to be (0.94 \pm 0.01, 1.68 \pm 0.05).

Radius of Convergence result

A Same T_E as for $N_t = 6$, with the corresponding band for μ_E (1.8 ± 0.1) displaying consistency as well.

Summary

- The method we advocated, and employed for $N_t = 4$ and 6, works for $N_t = 8$ as well, yielding similar qualitative picture.
- Our results (T_E, μ_E) for $N_t = 8$ are the first to approach the continuum limit.

Summary

- The method we advocated, and employed for $N_t = 4$ and 6, works for $N_t = 8$ as well, yielding similar qualitative picture.
- Our results (T_E, μ_E) for $N_t = 8$ are the first to approach the continuum limit.

Critical Point location appears to be the same for $N_t = 8$ and 6 at temperature $\frac{T^E}{T_c} = 0.94 \pm 0.01$. Slight shift in $\mu_B^E/T = 1.68(5)$ for $N_t = 8$; Agrees with $N_t = 6$ within errors.