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Introduction

 Complex Langevin dynamics provides a way to simulate theories with 
complex actions               no importance sampling, no sign problem!

 It opens the way to QCD simulations at                          

 The method was introduced in 1983 by G.Parisi and J.R.Klauder but shortly 
after it was clear that correct results are not garanteed

 We do not have a FULL UNDERSTANDING of the problem yet!

 A combination of analytical and numerical results, also on simple models, 
can help us!

 Recently the importance of the properties of the probability distribution 
(generated by the Langevin process) in the complexified configuration space 
has been clarified: the distribution has to drop very rapidly (in particular in 
the imaginary direction)              this can be  formalised in a criterion for 
correctness [G. Aarts, F. A. James, E. Seiler and I. -O. Stamatescu, Eur. Phys. J. C 
71 (2011) 1756]

¹B 6= 0
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The goal of this work

 Here we study the probability distribution (by brute force and solving the 
Fokker-Planck Equation, FPE) and then we relate the results to the criterion 
for correctness

 We have a complete characterisation of the dynamics by studying:

 Classical flow

 Criterion for correctness

 Explicit solution of the FPE

 

 We show moreover that:

 If the distribution has support only on a strip of the complexified 
configuration space, then correct results are obtained !
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The model + CL

 The toy model: 

 Analytic solution: 

 Complex Langevin (CL) equation:

 Complexification: 

 CL is now:

 Drift:

 Noise:
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Criterion for correctness

 Averaging over the noise we can determine the expectation values

 The probability distribution                describes how the configuration space 
is sampled; its evolution in time is given by the Fokker-Planck Equation:

 The expectation value is given by: 

 But we know that:

 Therefore we want that:

 Introducing the Langevin Operator:                                     ,                          
the criterion for correctness is given by:                                                             
                                                                                                                          
(to be satisfied for a complete set of observables)

P (x; y; t)

_P (x; y; t) = LTP (x; y; t); LT = @x (NR@x ¡Kx) + @y (NI@y ¡Ky)

hOi´

hOiP (t) =
Z
dxdy P (x; y; t)O(x + iy)

hOi½(t) =
Z
dx ½(x; t)O(x); ½(x) = e¡S(x)

hOi½(t) = hOiP (t)

~L = [@z ¡ (@zS(z))] @z

CO ´ h~LO(z)i = 0
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Real noise

 We consider the observables:                      and the criterion:

Perfect agreement and criterion for correctness satisfied!
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Complex noise

 Note:      always consistent with zero; strong fluctuation for large NIC2
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Solving FPE

 We want to solve the FP equation:

 To do that we solve the eigenvalue problem: 

 If we have a unique ground state      with eigenvaue           , then the solution 
is:

 In [A.Duncan, M.Niedermaier, Annals Phys.329 (2013) 93] P(x,y) is 
expanded in a basis of Hermite functions: 

 This was done introducing creation and annihilation operators,              :

  We determine the matrix elements:                     where                                    
   and therefore                                           

 Note: 
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Complex noise (eigenvalues & 3d distr.)

 The eigenvalues around the origin are independent of 

 Ground state:

 We find that there is an interval for      for which:

 There is always an eigenvalue consistent with zero

 The other eigenvalues are in the right half-plane

 The ground state is stable under variation of ! and NH

! = 1:5 and NH = 150

!

!
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Complex noise (integrat. distr. & power decay)

 Partially integrated distr:

 Manifestation of the truncation in 
 

 We observe a power decay with power 5:                                                      

 This suggests: 

Px(x) =
R1
¡1 dy P (x; y); Py(y) =

R1
¡1 dxP (x; y)

P (x; y) » 1
(x2+y2)3

Px(x) » 1
jxj5 ; Py(y) » 1

jyj5

NH



11

Real noise (eigenvalues & distr.)

 There is an eigenvalue at the origin but in general they depend on 

 From           we see convergence only for large values of       

 Distribution very localised, drops to zero around 

!

Py(y) !

y ¼ 0:28
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Real noise (truncation & 3d plot)

          exponential decay!



Px(x)

Px(x) » e¡ax
4

; a » 0:295:
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Classical flow



 3 fixed points (where                                        ):

 An attractive point at (x,y)=(0,0)

 Two repulsive points at   

 Blue lines where                 changes sign

 Dynamics confined between the dashed 
lines!!!  (we have:                                    )

(Kx(x; y); Ky(x; y)) for ¾ = 1+ i and ¸ = 1

Ky(x; y)

Kx(x; y) = Ky(x; y) = 0

(§0:455;¨1:10)

¡0:3029 < y < 0:3029
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Conservation law

 The classical flow result can be made more rigorous

 We note that the FPE takes the form of a conservation law:

                                                           

 We can now introduce the charge

 Assuming sufficient decay, i.e.                                      and real noise we 
have: 

 Since               is not negative, if                 has a definite sign as a function of 
x for a given y, then             has to vanish for this y value

_P (x; y; t) = @xJx(x; y; t) + @yJy(x; y; t)

Kx;y(x; y)P (x; y)! 0

Q(y; t) =
R1
¡1 dxJy(x; y; t)

Jx = (NR@x ¡Kx)P; Jy = (NI@y ¡Ky)P

Q(y) =
R1
¡1 dxKy(x; y)P (x; y) = 0

P (x; y) Ky(x; y)
P (x; y)

 The distribution is strictly zero in the two 
strips provided that

 Where: 

3A2 > B2 and NI = 0

y2§ =
A
2¸

µ
1§

q
1¡ B2

3A2

¶
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Absence of strips

 For complex noise there are 
no strips!

 Always power decay: 

 For real noise no strip if 

 Increasing B similar to 
increasing 

Py(y) » 1=jyj5

NI

3A2 < B2
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Criterion for correctness vs B

 Also from here we see that the effect of increasing B is very similar 
to increasing the value of  NI
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Universal decay behaviour

 It is possible to understand the universal power decay!

 Starting from FPE:

 And substituting the Ansatz:

 We find that:

 At large x and y, only the last term dominates and we have: 

 And therefore: 

   

_P (x; y; t) = LTP (x; y; t)

P (x; y) =
c

(x2 + y2)®

®
x2 ¡ y2 + 2®(NRx2 +NIy2)

(x2 + y2)2
+A(1 ¡ ®) + ¸(3¡ ®)(x2 ¡ y2) = 0

® = 3

Px(x) »
1

jxj5 ; Py(y) »
1

jyj5
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Conclusions
 In order to justify the results obtained with CL the probability distribution has 

to be sufficiently localised

 Here we have studied the properties of the distribution via a number of 
methods: classical flow, histogram by brute force, explicit solution of FPE, 
criterion for correctness

 We have found:

 For real noise  as                  , the distribution has support only in a strip 
and it has an exponential decay in the real direction; criterion for 
correctness satisfied and correct results obtained!

 When                 or the noise is complex the distribution is NOT localised; 
 the distribution has a power law:                                     , because of this 
slow decay  high moments are not well-defined; criterion for correctness 
suffer of large fluctuations: signal of failure!  

 A consistent picture of the dynamics can be obtained already from a 
combination of partially integrated distribution and criterion for correctness

 These tools are readily available to study SU(N) gauge theories (plus gauge 
cooling...)

3A2 > B2

P (x; y) » (x2 + y2)¡3
3A2 < B2
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