Finite size scaling for 3 and 4-flavor QCD with finite chemical potential arXiv:1307.7205

Shinji Takeda

Kanazawa University

in collaboration with

X-Y. Jin, Y. Kuramashi, Y. Nakamura & A. Ukawa

Why 4-flavor ?

- Good testing ground before 3-flavor
- Depending on the size of mass, phase diagram changes
- Reasonable cost to survey transition region

Lattice study so far

- Multi-parameter reweighting Fodor & Katz 01
- Imaginary chemical potential D'Elia & Lombardo 02
- Canonical approach de Forcrand 06, Kentucky 10

It is not well investigated by finite size scaling!

What we do here

- Careful finite size scaling and high statistics ~ 10⁵ conf.
- Grand canonical approach with Wilson type fermions

$$\mathcal{Z}_{\text{QCD}}(T,\mu) = \int [dU] e^{-S_{\text{g}}[U]} \det D(\mu;U)$$
 Complex

Phase can be controlled for larger temporal size

ST, Kuramashi & Ukawa (2011)

$$\mathcal{Z}_{||}(T,\boldsymbol{\mu}) = \int [dU] e^{-S_{g}[U]} |\det D(\boldsymbol{\mu}; U)$$

Reduction technique Danzer & Gattringer (2008)

exact phase & quark number

GPGPU

Phase reweighting

 $\langle \mathcal{O} \rangle = \frac{\langle \mathcal{O}e^{iN_{\rm f}\theta} \rangle_{||}}{\langle e^{iN_{\rm f}\theta} \rangle_{||}}$

Simulation parameters

Which expansion is better?

Phase-reweighting factor

 $a\mu_c = am_\pi/2 \sim 0.7$

Volume scaling of susceptibility peak

1st order phase transition

Cross over/weak 1st order PT

Challa Landau Binder cumulant

Challa, Landau & Binder 86 Fukugita, Okawa & Ukawa 89

Scaling for the min of CLB cumulant

1st PT

Cross over/weak 1st PT

Summary for N_f=4

- μ-reweighting works very well
- Taylor expansion of logarithm of determinant is a good approximation
- Moments analysis shows that

Lee-Yang zero analysis will be presented by X-Y. Jin after this talk

N_f=3 finite density QCD

 Purpose : Tracing critical end point in (m,µ) plane
 de Forcrand & Philipsen 2006

Procedure

- Critical end point is estimated by Binder cumulant (kurtosis) intersection method
 Karsch et al. 2001
- μ=0 is discussed by Nakamura on Thu.

Kurtosis intersection

- Iwasaki gauge & clover fermions
- Grand canonical & phase reweighting
- N_T=6 N_L=8, 10, 12 aμ=0.1 (μ/T=0.6)

Gauge action susceptibility

BACK UP SLIDES

Applicable range (Taylor log)

 $6^3 \beta$ =1.58 κ =0.1385

Comparison between QCD and phase quenched QCD

aμ

Comparison between Grand Canonical and Canonical approach

Pressure of QCD and phase quenched QCD

$$\langle \cos(4\theta) \rangle_{||} = \exp\left[\frac{V}{T} \left(p_{QCD}(\mu) - p_{QCD_{||}}(\mu)\right)\right] = \exp\left[\frac{V}{T}\Delta p(\mu)\right]$$

Pressure

Transition point

Skewness

Scaling of min of kurtosis

Zero density simulation 1

$$\beta$$
=1.60
 κ =0.1380
V=6³-12³
m_{\pi}/m_{\rho}=0.825
T/m_{\rho}=0.155

Strong 1st PT

β=1.600, κ=0.1380

Zero density simulation 2

