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QCD in external magnetic field

External magnetic fields can be relevant for the phenomenology of

primordial universe

heavy-ion collisions

From a theoretical point of view they are also interesting as a different way
to test the non-perturbative dynamics of QCD.

External E.M. fields couple to QCD through the Dirac matrix. In the
unimproved staggered formulation

Di , j = amδi , j +
1

2

4
∑

ν=1

ην(i)
[

uν(i)Uν(i)δi , j−ν̂ − u∗ν(i − ν̂)U†
ν(i − ν̂)δi , j+ν̂

]

Uν(i) = non abelian link variables
uν(i) = abelian link variables
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The QCD medium

We are interested in the magnetic properties of QCD at finite temperature.

For “small” external magnetic B we can write the free energy as

F (B ,T ) = F (B = 0,T ) + F1(T )B +
1

2
F2(T )B2 +O(B3)

F1 ≡ 0 if no ferromagnetism
F2 is proportional to the magnetic susceptibility (see later)
F2 < 0 paramagnetic medium
F2 > 0 diamagnetic medium

The basic point we want to settle:
is QCD paramagnetic or diamagnetic?
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The standard way and a no-go

The determination of magnetic susceptibilities is a standard problem in
statistical physics. An estimator of F2 is obtained by using the relation

F2(T ) =
∂2F (B ,T )

∂B2

∣

∣

∣

∣

B=0

which amounts to compute the mean value of some lattice observable at
B = 0.

In QCD this is not possible: to reduce finite size effects simulations are
performed on compact manifold without boundary and as a consequence
the possible values of the homogeneous magnetic field are quantized.

∂
∂B

on the lattice is not well defined!
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The magnetic field on the lattice

On a compact manifold with no boundary there is
an ambiguity in the application of the Stokes
theorem: which part of the manifold is the interior
and which is the exterior of a path?

For an homogeneous magnetic field Bẑ we have

∮

Aµdxµ = AB

∮

Aµdxµ = −(ℓxℓy −A)B

This does not affect the motion of a charged particle if we impose

exp(iqBA) = exp(iqB(A− ℓxℓy )) ⇒ qB =
2πb

ℓxℓy
b ∈ Z

(the ℓµ’s are the lengths in physical units)
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The magnetic field on the lattice (2)

A simple choice of the lattice discretization is

uy (n) = e ia
2qBnx ux(Lx − 1) = e−ia2qBLxny otherwise uj(n) = 1

An example for Lx = Ly = 4.

The E.M. plaquettes are given by

Pij = e ia
2qB for (i , j) 6= (3, 3)

P33 = exp(ia2qB + ia2qBLxLy )

Everything is ok if a2qBLxLy = 2πb
with b ∈ Z. The idea is the same as
the Dirac quantization condition for
monopoles (i.e. “invisible” string).
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A way to go

We are interested in studying the B dependence of F , i.e.

∆F (Bk ,T ) = F (Bk ,T )− F (0,T ) a2qBk =
2πk

LxLy
k ∈ Z

M(B ,T ) = ∂F (B,T )
∂b

is not the magnetization, but we can evaluate it at
non quantized values of B in order to get

∆F (Bk ,T ) =

∫ k

0
M(b,T )db

All the “periodicity” artefacts that affect M simplify in the integral to give
us the correct answer!

We work on finite lattices, so everything is analytic and we adopt the
previous expression for the ui (n) also for non quantized B values. These
values of B are non physical but are needed only for the purpose of
reconstructing ∆F for integer b.
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Renormalization prescription

The free energy renormalizes additively so it is not enough to fix the sign
of ∆F (Bk ,T ) to determine the nature of the magnetic QCD medium.

We can remove the additive renormalization by subtracting the zero
temperature value:

(∆F )R(Bk ,T ) = ∆F (Bk ,T )−∆F (Bk ,T = 0)

This is motivated by the idea that we want to study the properties of the
thermal medium so the zero temperature value has to be subtracted as a
normalization.

Our procedure is thus the following:

1 compute the “magnetization” M for different temperatures and for
non quantized B values

2 integrate M to get ∆F (Bk ,T ) for the quantized Bk values

3 compute the renormalized magnetic free energy (∆F )R(Bk ,T )
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How M looks like

M computed on a 164 lattice, Nf = 1 + 1, mπ ≈ 480MeV, a ≈ 0.188fm.
The continuous line is a 3rd order spline interpolation.
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The numerical integration of M to get ∆F is performed by means of spline
interpolations together with a bootstrap analysis for the error estimation.
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Extracting the quadratic term

We now need to estimate f2 defined by ∆F (Bk ,T ) ≈ 1
2 f2(T )k2 (Bk ∝ k).

In order to minimize the error propagation in the integration we fit

∆F (Bk ,T )−∆F (Bk−1,T ) =

∫ k

k−1
M(b,T )db

with the function

1

2
f2(T )

[

k2 − (k − 1)2
]

=
1

2
f2(T )(2k − 1)

Results for 4 × 163, 4 × 243 and
164 lattices with mπ ≈ 480MeV
and a ≈ 0.188fm (T ≈ 175MeV).
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A note on the susceptibility
In an usual linear medium we have (in SI units)

M = χH B = µH µ = µ0(1 + χ)

and the expression for the total free energy (for volume unit) is

F/V =

∫

H · dB =
1

2µ
B2 =

1

2µ0(1 + χ)
B2

In our QCD simulations the magnetic field is quenched and the energy of
the electromagnetic field “without QCD” must be subtracted:

F/V = −

∫

M · dB = −
χ

µ0(1 + χ)

∫

B · dB

moreover there is no back reaction of the medium on the magnetic field,
so that B = µ0H and

F/V = −
χ

2µ0(1 + χ)
B

2
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The final result
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Some reference values

Tungsten 7.8×10-5

Platinum 2.8×10-4

Liquid Oxygen 3.9×10-3

Gadolinum 4.8×10-1

mπ=195MeV, a=0.188fm
mπ=275MeV, a=0.17fm
mπ=480MeV, a=0.141fm
mπ=480MeV, a=0.188fm
mπ=480MeV, a=0.24fm
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Check for systematics

dependence on the volume
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dependence on the spline in-
terpolation and/or the number
of points

s 16 points 32 points

1 0.001192(32) 0.001187(25)

2 0.001188(35) 0.001186(25)

3 0.001184(35) 0.001188(25)

4 0.001183(34) 0.001188(27)

dependence on the B field
extension out of integers

one string 0.00211(5)

two strings 0.00208(4)

Systematics are always less than statistical errors
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Conclusions & developments

We presented a simple new strategy to study the magnetic properties
of QCD

Our results show that the QCD medium near deconfinement behaves
as a strong paramagnet

A study with improved fermions at physical quark masses is ongoing.
Preliminary results are in qualitative and reasonable quantitative
agreement with the unimproved staggered result presented here.

C. Bonati (INFN) QCD magnetic susceptibility Lattice 2013 15 / 15


	QCD at finite temperature: diamagnetic or paramagnetic?
	Why it is not trivial to answer
	How to answer
	Numerical results
	Conclusions & developments

