Magnetic-field induced (inverse) catalysis for gluons through an improved interaction measure

> Falk Bruckmann (Univ. Regensburg)

Lattice 2013, Mainz, July 2013

#### with G. Bali, G. Endrődi, F. Gruber, A. Schäfer

JHEP 1304 (13) 130 [1303.1328]









## Magnetic fields and Quantum Chromodynamics

- early universe  $\sqrt{eB} \simeq 2 \text{ GeV}$ • RHIC/LHC 0.1..0.5 GeV QCD scale! non-central collisions charged spectators *B* perp. to reaction plane
- neutron stars, magnetars

1 MeV  $B \simeq 10^{14}$  G

## Magnetic fields and Quantum Chromodynamics

| <ul> <li>early universe</li> </ul>                                                                                | $\sqrt{\textit{eB}} \simeq$ 2 GeV |                                                                 |
|-------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------------------------------------|
| <ul> <li>RHIC/LHC<br/>non-central collisions<br/>charged spectators</li> <li>B perp. to reaction plane</li> </ul> | 0.10.5 GeV                        | QCD scale!                                                      |
| <ul> <li>neutron stars, magnetars</li> </ul>                                                                      | 1 MeV                             | $B\simeq 10^{14}~{ m G}$                                        |
| <ul> <li>cf. strongest field in lab</li> <li>refrigerator magnet</li> <li>earths magn. field</li> </ul>           |                                   | 10 <sup>5</sup> G (10 <sup>7</sup> G unstable<br>100 G<br>0.6 G |

#### magn. fields as probes for our understanding of nonperturbative QCD

# Setting

- quarks charged:  $(q_u, q_d, q_s) = (\frac{2}{3}, -\frac{1}{3}, -\frac{1}{3})e$ gluons neutral: indirect effects via strong coupling
- constant external magnetic field in equilibrium QCD (Euclidean)
   idealized situation
- anisotropic

 $\Rightarrow$  talk by G. Endrődi

• free quarks: Landau orbits with min. energy zero and Landau '30 degeneracy  $\propto$  magn. flux: *B* induces many small eigenvalues

lattice:

- magnetic fields quantized and bounded, no sign problem state-of-the-art:  $\sqrt{eB} = 0.1 \dots 1$  GeV
- 2+1 staggered quarks: physical masses in continuum limit
   details
   new phenomena in contrast to other lattice simulations

D'Elia et al. '10, Ilgenfritz et al. '12

# Magnetic catalysis of quarks

• change of light quark condensate with B (renormalized): Bali, FB et al. '12



magnetic catalyis:  $\langle \bar{\psi}\psi \rangle$ (*B*)  $\nearrow$ 

Müller, Schramm<sup>2</sup> '92 Gusynin, Miransky, Shovkovy '96

comparison to  $\chi$ PT and NJL

Cohen, McGady, Werbos '07; Andersen '12 Gatto, Ruggieri '10

robust effect: relying on Landau level degeneracy

#### Inverse magnetic catalysis of quarks

• change of light quark condensate with *B* at  $T \simeq T_c$ :

Bali, FB et al. '12



non-monotonic  $\Rightarrow$  magn. catalysis turns into inverse magn. catalysis feedback of light quarks  $\Rightarrow$  talk by T. Kovács consequence:  $T_c(B)$  decreases missed in almost all non-lattice approaches

Falk Bruckmann

Magnetic-field induced (inverse) catalysis for gluons

# Magnetic catalysis of gluons

• change of condensate and gluonic action at T = 0: Bali, FB et al. '13



 $\Rightarrow$  gluons inherit magnetic catalysis from quarks since strongly coupled

magnitude O(100) larger for gluons, but B = 0 scale (= gluon condensate) already O(200) larger: relative effect larger on quarks

Falk Bruckmann

#### Inverse magnetic catalysis of gluons

• change of condensate and gluonic action, at  $T \simeq T_c$ : Bali, FB et al. '13



non-monotonic behaviour, similar shape for quarks and gluons  $\Rightarrow$  gluons inherit inverse magnetic catalysis from quarks, too

#### Details on the observable

choose your favorite representation and name:

$$I = \epsilon - 3p$$
 ... interaction measure (free gas:  $\epsilon = 3p$ )

 $= \langle \theta^{\mu}_{\mu} \rangle \qquad \dots \text{ trace anomaly}$ energy-momentum-tensor:  $\theta_{\mu\nu} = \frac{\partial \mathcal{L}}{\partial g^{\mu\nu}} - 2g_{\mu\nu}\mathcal{L}, \ \theta^{\mu}_{\mu} = 4\mathcal{L} - \frac{2\partial \mathcal{L}}{\partial \log g^{\mu\nu}}$  $= T^{5} \frac{\partial}{\partial T} \frac{p}{T^{4}} \qquad (\text{Stefan-Boltzmann: } \frac{p}{T^{4}} = \text{const.})$  $= -\frac{T}{V} \sum_{\mu} \frac{\partial \log Z}{\partial \log L_{\mu}} \qquad \dots \text{ scale anomaly}$ 

 $\stackrel{\text{lattice}}{=} - \frac{T}{V} \frac{d \log Z}{d \log a}$ 

$$-I = \frac{T}{V} \frac{d}{d \log a} \log Z(\beta_g; am) \qquad \beta_g = \frac{6}{g^2}$$

$$-I = \frac{T}{V} \frac{d}{d \log a} \log Z(\beta_g; am) \qquad \beta_g = \frac{6}{g^2}$$
$$= \frac{T}{V} \left( \frac{-\partial \log Z}{\partial \beta_g} \frac{-\partial \beta_g}{\partial \log a} + \frac{\partial \log Z}{\partial \log am} \frac{\partial \log am}{\partial \log a} \right)$$

$$-I = \frac{T}{V} \frac{d}{d \log a} \log Z(\beta_g; am) \qquad \beta_g = \frac{6}{g^2}$$
$$= \frac{T}{V} \left( \frac{-\partial \log Z}{\partial \beta_g} \frac{-\partial \beta_g}{\partial \log a} + \frac{\partial \log Z}{\partial \log am} \frac{\partial \log am}{\partial \log a} \right)$$
$$= \langle s_g \rangle \underbrace{R_\beta}_{\frac{-6}{g^3} \beta_{\text{lat}} = \beta_0 + \beta_1 g^2} + m \langle \bar{\psi}\psi \rangle \underbrace{(1 + \gamma_{\text{lat}})}_{1 + \mathcal{O}(g^2)} \qquad \mathcal{O}(g^2) = \mathcal{O}\left(\frac{1}{\log a}\right)$$

$$-I = \frac{T}{V} \frac{d}{d \log a} \log Z(\beta_g; am) \qquad \beta_g = \frac{6}{g^2}$$
$$= \frac{T}{V} \left( \frac{-\partial \log Z}{\partial \beta_g} \frac{-\partial \beta_g}{\partial \log a} + \frac{\partial \log Z}{\partial \log am} \frac{\partial \log am}{\partial \log a} \right)$$
$$= \langle s_g \rangle \underbrace{R_\beta}_{\frac{-6}{g^3} \beta_{\text{lat}} = \beta_0 + \beta_1 g^2} + m \langle \bar{\psi}\psi \rangle \underbrace{(1 + \gamma_{\text{lat}})}_{1 + \mathcal{O}(g^2)} \qquad \mathcal{O}(g^2) = \mathcal{O}\left(\frac{1}{\log a}\right)$$

• changes  $\Delta I \equiv I(B) - I(0)$  and  $m \Delta \langle \bar{\psi} \psi \rangle$  are finite (add. div. removed) with lattice artifacts  $O(a^2) \Rightarrow$ 

$$finite + \mathcal{O}\left(\frac{1}{\log a}\right) \qquad finite + \mathcal{O}\left(\frac{1}{\log a}\right)$$
$$-\Delta I = \Delta \langle s_g \rangle R_\beta + m\Delta \langle \bar{\psi}\psi \rangle \gamma_{\text{lat}} + m\Delta \langle \bar{\psi}\psi \rangle$$

unimproved

finite + 
$$\mathcal{O}(a^2)$$
 finite +  $\mathcal{O}(a^2)$ 

# Effect of improvement

 $\Delta I_g \rightarrow \Delta I_g^{\text{imp}}$  incl. quark contribution:



better continuum limit:  $\mathcal{O}\left(\frac{1}{\log a}\right) \to \mathcal{O}(a^2)$ 

 $I_{q}^{imp}$  perturbatively RG-scale invariant

Tarrach '81; Grinstein, Randall '89

## Summary

- gluons inherit from the quarks:
  - magnetic catalysis at T = 0
  - inverse magnetic catalysis at *T* ≃ *T<sub>c</sub>* in part. non-monotonic behavior (⇐ decrease of *T<sub>c</sub>*)
- interaction measure:
  - gluonic action density (with  $\beta_{lat}$ ) + condensate (with  $\gamma_{lat}$ )  $\Rightarrow$  improved scaling with *a*
  - gluonic and quark (inverse) magnetic catalysis add up in I

## Backup: Simulation details

as for transition studies at B = 0

**Budapest-Wuppertal** 

- tree-level improved gauge action
- stout smeared staggered fermions, rooting trick
- 2 light quarks + strange quark, charges  $(q_u, q_d, q_s) = (\frac{2}{3}, -\frac{1}{3}, -\frac{1}{3})e$
- lattice spacing set at T = 0, B = 0physical pion masses set by  $f_K, f_K/m_{\pi}$  and  $f_K/m_K$

•  $T = 0: 24^3 \times 32, 32^3 \times 48$  and  $40^3 \times 48$  lattices

• T > 0:  $N_t = 6, 8, 10$  meaning a = 0.2, 0.15, 0.12 fm

 $N_s = 16, 24, 32$  for finite volumes

- condensates from stochastic estimator method with 40 vectors
- magn. flux quanta:  $N_B \le 70 < \frac{N_x N_y}{4} = 144$

# QCD phase diagram

 condensate as a function of T for different B's:  $\Rightarrow$  phase diagram with *B*:



inflection points

 $\Rightarrow T_c \text{ decreases by O(10) MeV}$ relevant for LHC??

500

10/10